a: Trường hợp 1: m=0
Pt sẽ là -x+1=0
hay x=1(nhận)
Trườg hợp 2: m<>0
\(\text{Δ}=\left(m-1\right)^2-4\cdot2m\cdot\left(-3m+1\right)\)
\(=\left(m-1\right)^2+8m\left(3m-1\right)\)
\(=m^2-2m+1+24m^2-8m\)
\(=25m^2-10m+1=\left(5m-1\right)^2>=0\)
Do đó: Phương trình luôn có nghiệm
b: Trường hợp 1: m=1
Pt sẽ là 3x-2=0
hay x=2/3(nhận)
Trường hợp 2: m<>1
\(\text{Δ}=\left(2m+1\right)^2-4\left(m-1\right)\left(m-3\right)\)
\(=4m^2+4m+1-4\left(m^2-4m+3\right)\)
\(=4m^2+4m+1-4m^2+16m-12\)
=20m-11
Để phương trình có nghiệm thì 20m-11>=0
hay m>=11/20