Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Mạnh Kiên
Xem chi tiết
Anh Nqocc
Xem chi tiết
Phạm Phương Quỳnh
15 tháng 4 2021 lúc 10:03

a)Xét tam giác ABC có:

góc ABC + góc BAC + góc ACB =180 độ. Thay số:

60 độ + 90 độ + góc ACB = 180 độ

góc ACB =180 độ - (60 độ + 90 độ)

góc ACB = 30 độ

b)Xét tam giác AMN và tam giác CMN có:

AM = CM (M là trung điểm của AC)

MN chung

góc AMN = góc CMN =90 độ(MN vuông góc với AC)

Suy ra :tam giác AMN = tam giác CMN(c.g.c)

CÒN LẠI MÌNH CHƯA NGHĨ RA. MONG BẠN THÔNG CẢMbucminh

Lynn ;-;
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 4 2022 lúc 20:25

a: \(AB=\sqrt{BC^2-AC^2}=6\left(cm\right)\)

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔCAB vuông tại A và ΔCAD vuông tại A có

CA chung

AB=AD

Do đó: ΔCAB=ΔCAD

nguyệt nga
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 1 2024 lúc 11:50

a:

Ta có: DE\(\perp\)AC

AB\(\perp\)AC

Do đó: DE//AB

Xét ΔCAB có ED//AB

nên \(\dfrac{CE}{EA}=\dfrac{CD}{DB}\)

=>\(\dfrac{BD}{DC}=\dfrac{AE}{EC}\)

b: Xét ΔHBA vuông tại H và ΔEDC vuông tại E có

\(\widehat{EDC}=\widehat{HBA}\)(hai góc đồng vị, DE//AB)

Do đó: ΔHBA~ΔEDC

Nguyễn Ngọc Anh Thư
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 4 2022 lúc 22:06

a: BC=15cm

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

Suy ra: AD=HD

Phạm Quang Vinh
Xem chi tiết
Akai Haruma
9 tháng 7 2023 lúc 18:35

Lời giải:
a. Áp dụng hệ thức lượng trong tam giác vuông: 

$144=AH^2=BH.HC(1)$

$BH+CH=BC=25(2)$

Từ $(1); (2)$ áp dụng định lý Viet đảo thì $BH, CH$ là nghiệm của pt: $x^2-25x+144=0$

$\Rightarrow BH, CH= (16,9)$

Mà $AB< AC$ nên $BH< CH$

$\Rightarrow BH=9; CH=16$ (cm) 

$AB=\sqrt{BH^2+AH^2}=\sqrt{9^2+12^2}=15$ (cm) 

$AC=\sqrt{CH^2+AH^2}=\sqrt{16^2+12^2}=20$ (cm)

b. 

$AM=\frac{BC}{2}=\frac{25}{2}$ (cm) 

$\sin \widehat{AMH}=\frac{AH}{AM}=\frac{24}{25}$

$\Rightarrow \widehat{AMH}\approx 74^0$

c. 

$HM=\sqrt{AM^2-AH^2}=\sqrt{(\frac{25}{2})^2-12^2}=3,5$ (cm) 

$S_{AHM}=\frac{AH.HM}{2}=\frac{12.3,5}{2}=21$ (cm2)

Akai Haruma
9 tháng 7 2023 lúc 18:38

Hình vẽ:

loading...

Dương Văn Tiến
Xem chi tiết
CTD Thành
7 tháng 5 2022 lúc 8:34

a, Do ABC vuông cân
=> Góc A = 90 độ
=> Góc B = Góc C = 90/2 = 45 độ
b, Do AB < AC < BC (11 < 15 < 19)
=> Góc C < Góc B < Góc A (Quan hệ góc đối diện)

Tuyết Minh Nguyễn Hoàng
Xem chi tiết
Nguyễn Huy Tú
13 tháng 4 2021 lúc 15:38

A B C 6 10 D E

a, Xét tam giác ECD và tam giác ACB ta có 

^CED = ^CAB = 900

^C _ chung 

Vậy tam giác ECD ~ tam giác ACB ( g.g )

b, Áp dụng định lí Pytago ta có : 

\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AB^2=100-36=64\Rightarrow AC=8\)cm 

Do BD là đường phân giác ^B 

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AD}{DC}\) mà \(DC=AC-AD=8-AD\)

\(\Rightarrow\dfrac{6}{10}=\dfrac{AD}{8-AD}\Rightarrow48-6AD=10AD\Rightarrow16AD=48\Rightarrow AD=3\)cm 

Vậy AD = 3 cm 

c, Ta có : \(\dfrac{S_{ECD}}{S_{ACB}}=\dfrac{\dfrac{1}{2}ED.EC}{\dfrac{1}{2}AC.AB}=\dfrac{ED.EC}{6.8}=\dfrac{ED.EC}{48}\)(*)

\(\dfrac{EC}{AC}=\dfrac{ED}{AB}=\dfrac{CD}{BC}\)( tỉ số đồng dạng ý a ) 

\(\Rightarrow\dfrac{EC}{8}=\dfrac{5}{10}\)( CD = AC - AD = 8 - 3 = 5 cm )

\(\Rightarrow EC=\dfrac{40}{10}=4\) cm (1) 

\(\Rightarrow\dfrac{ED}{AB}=\dfrac{CD}{BC}\Rightarrow ED=\dfrac{AB.CD}{BC}=\dfrac{6.5}{10}=3\)cm (2) 

Thay (1) ; (2) vào (*) ta được :

\(\dfrac{S_{ECD}}{S_{ACB}}=\dfrac{3.4}{48}=\dfrac{12}{48}=\dfrac{1}{4}\)

 

 

 

Nguyễn Viễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2023 lúc 21:20

a: Xét ΔABC có \(BC^2=AB^2+AC^2\left(20^2=400=144+256=12^2+16^2\right)\)

nên ΔABC vuông tại A

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot20=12\cdot16=192\)

=>AH=192/20=9,6(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot BC=CA^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}BH=\dfrac{12^2}{20}=7,2\left(cm\right)\\CH=\dfrac{16^2}{20}=12,8\left(cm\right)\end{matrix}\right.\)

c: XétΔABC vuông tại A có

\(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)

=>\(\widehat{B}\simeq53^0\)

d: Xét ΔABC có AD là phân giác

nên \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{BAC}{2}\right)\)

\(=\dfrac{2\cdot6\cdot8}{6+8}\cdot cos45=\dfrac{96}{14}\cdot\dfrac{\sqrt{2}}{2}=\dfrac{24}{7}\sqrt{2}\left(cm\right)\)