Cho tam giác ABC vuông tại A. Biết AC = 8cm BC=10cm
a) Tính AB, so sánh các góc của tam giác ABC
b) Trên tia đối tia AB lấy điểm D sao cho AD=AB. Đường thẳng qua A song song BC cắt DC tại N. Chứng minh tam giác ACB = tam giác ACD và tam giác ANC cân
c) Trên đoạn AC lấy điểm G sao cho GA = 1/2 GC. Chứng minh B;G;n thẳng hàng
a: \(AB=\sqrt{BC^2-AC^2}=6\left(cm\right)\)
Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
b: Xét ΔCAB vuông tại A và ΔCAD vuông tại A có
CA chung
AB=AD
Do đó: ΔCAB=ΔCAD