đổi radian sang độ
a) -270 b)-530300 c) 400250 d)\(-\dfrac{17}{\pi}\)
Đổi các góc sau từ radian sang độ: 0,5 rad; 0,75 rad; π rad.
\(\begin{array}{l}0,5rad = 0,5.\frac{{{{180}^0}}}{\pi } \approx 28,{6^0}\\0,75rad = 0,75.\frac{{{{180}^0}}}{\pi } \approx {43^0}\\\pi rad = \pi .\frac{{{{180}^0}}}{\pi } = {180^0}\end{array}\)
Sử dụng máy tính bỏ túi để đổi từ độ sang radian và ngược lại.
a) Đổi 35o47’25’’ sang radian
b) Đổi 3 rad ra độ
a) Đổi 35o47’25’’ sang radian
b) Đổi 3 rad ra độ
Đổi các góc sau từ độ sang radian: 300 , 900 , 1050 , 1200 , 2700.
\(\begin{array}{l}{30^0} = \frac{{30.\pi }}{{180}}rad = \frac{\pi }{6}rad\\{90^0} = \frac{{90.\pi }}{{180}}rad = \frac{\pi }{2}rad\\{105^0} = \frac{{105.\pi }}{{180}}rad = \frac{{7\pi }}{{12}}rad\\{120^0} = \frac{{120.\pi }}{{180}}rad = \frac{{2.\pi }}{3}rad\\{270^0} = \frac{{270.\pi }}{{180}}rad = \frac{{3.\pi }}{2}rad\end{array}\)
Đổi số đo của các góc sau đây sang radian:
a) −125°;
b) 42°;
\(a,-125^o=\dfrac{\pi.\left(-125\right)}{180}rad=-\dfrac{25\pi}{36}rad\\ b,42^o=\dfrac{\pi.42}{180}rad=\dfrac{7\pi}{30}rad\)
a, 25/35 \(\pi\)
b, 7/30 \(\pi\)
Bài 1 Đổi sang độ F và K
a, 17 độ C b, 35 độ C c, 42 độ C
d, -36 độ C
Bài 2 Đổi sang độ C
a, 59 độ F b, 5 độ F c, 376 độ K
d, 310 độ K
Đổi từ oC sang oF
17 x 1,8 + 32 = (tự tính)
35 x 1,8 + 32 =
42 x 1,8 + 32 =
-36 x 1,8 + 32 =
Đổi từ oC sang oK
17 + 273,15 = ..
(tương tự v vs những số còn lại)
B2:
(59 - 32) : 1,8 = ... (tự tính)
(tương tự v vs độ F)
376 - 273,15 = ...
(tương tự v vs độ K)
a) Đổi từ độ sang rađian các số đo sau: \({360^ \circ }, - {450^ \circ }\)
b) Đổi từ rađian sang độ các số đo sau: \(3\pi , - \frac{{11\pi }}{5}\)
a) Ta có:
\(\begin{array}{l}{360^ \circ } = 360.\frac{\pi }{{180}} = 2\pi \\ - {450^ \circ } = 450.\frac{\pi }{{180}} = \frac{5}{2}\pi \end{array}\)
b)\(3\pi = 3\pi .{\left( {\frac{{180}}{\pi }} \right)^ \circ } = {540^ \circ }\)
\( - \frac{{11\pi }}{5} = \left( { - \frac{{11\pi }}{5}} \right).{\left( {\frac{{180}}{\pi }} \right)^ \circ } = - {396^ \circ }\)
Hải lí là một đơn vị chiều dài hàng hải, được tính bằng độ dài một cung chắn một góc \(\alpha = {\left( {\frac{1}{{60}}} \right)^\circ }\) của đường kinh tuyến (Hình 17). Đổi số đo \(\alpha \) sang radian và cho biết 1 hải lí bằng khoảng bao nhiêu kilomet, biết bán kính trung bình của Trái Đất là 6371km. Làm tròn kết quả đến hàng phần trăm.
Ta có: \(\alpha=\left(\dfrac{1}{60}\right)^o\Rightarrow\alpha=\dfrac{\left(\pi\cdot\dfrac{1}{60}\right)}{180}=\dfrac{\pi}{10800}\)
Vậy một hải lí có độ dài bằng:
\(l=\dfrac{\pi Rn^o}{180^o}=\dfrac{\pi\cdot6371\cdot\left(\dfrac{1}{60}\right)^o}{180^o}\approx1,85\left(km\right)\)
cho cos2a = \(\dfrac{2}{3}\)và 270 độ < x < 360 độ. Tính \(sin\left(x-\dfrac{\pi}{6}\right)\), \(cos\left(x-\dfrac{\pi}{6}\right)\)
270 độ<x<360 độ
=>sinx<0 và cosx>0
\(cos2x=\dfrac{2}{3}\)
=>\(2\cdot cos^2x-1=\dfrac{2}{3}\)
=>\(2\cdot cos^2x=\dfrac{5}{3}\)
=>\(cos^2x=\dfrac{5}{6}\)
mà cosx>0
nên \(cosx=\dfrac{\sqrt{30}}{6}\)
=>\(sinx=-\dfrac{\sqrt{6}}{6}\)
\(sin\left(x-\dfrac{pi}{6}\right)=sinx\cdot cos\left(\dfrac{pi}{6}\right)-cosx\cdot sin\left(\dfrac{pi}{6}\right)\)
\(=-\dfrac{\sqrt{6}}{6}\cdot\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{30}}{6}\cdot\dfrac{1}{2}=\dfrac{-3\sqrt{2}-\sqrt{30}}{12}\)
\(cos\left(x-\dfrac{pi}{6}\right)=cosx\cdot cos\left(\dfrac{pi}{6}\right)+sinx\cdot sin\left(\dfrac{pi}{6}\right)\)
\(=\dfrac{\sqrt{30}}{6}\cdot\dfrac{\sqrt{3}}{2}+\dfrac{-\sqrt{6}}{6}\cdot\dfrac{1}{2}=\dfrac{\sqrt{90}-\sqrt{6}}{12}\)
Sử dụng máy tính cầm tay để:
a) Tính: \(\cos \frac{{3\pi }}{7};\tan ( - {37^ \circ }25')\)
b) Đổi \({179^ \circ }23'30''\)sang rađian;
c) Đổi \(\frac{{7\pi }}{9}\)(rad) sang độ.
a) \(\cos \frac{{3\pi }}{7} = 0,22252\); \(\tan ( - {37^ \circ }25') = 0,765018\)
b) \(179^o23'30"\approx3,130975234\left(rad\right)\)
c) \(\frac{{7\pi }}{9} = {140^ \circ }\)