Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
HMinhTD
Xem chi tiết
♡ ♡ ♡ ♡ ♡
Xem chi tiết
Trịnh Trân Trân
2 tháng 1 2017 lúc 23:04

Hay quớ ak! Mơn m nhìu nha ný! <3 <3 <3 (not thả thính =))))

Huyền Trân
Xem chi tiết
Kudo Shinichi
15 tháng 9 2019 lúc 15:36

a ) \(\frac{1}{\left(x-y\right)\left(y-z\right)}+\frac{1}{\left(y-z\right)\left(z-x\right)}+\frac{1}{\left(z-x\right)\left(x-y\right)}\)

     = \(\frac{z-x}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}+\frac{x-y}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}+\frac{y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

    = \(\frac{z-x+x-y+y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=0\)

b ) \(\frac{4}{\left(y-x\right)\left(z-x\right)}+\frac{3}{\left(y-x\right)\left(y-z\right)}+\frac{3}{\left(y-z\right)\left(x-z\right)}\)

 = \(\frac{-4}{\left(y-x\right)\left(x-z\right)}+\frac{3}{\left(y-x\right)\left(y-z\right)}+\frac{3}{\left(y-z\right)\left(x-z\right)}\)

\(\frac{-4\left(y-z\right)}{\left(x-z\right)\left(y-z\right)\left(y-x\right)}+\frac{3\left(x-z\right)}{\left(x-z\right)\left(y-z\right)\left(y-x\right)}+\frac{3\left(y-x\right)}{\left(x-z\right)\left(y-z\right)\left(y-x\right)}\)

\(\frac{-4y+4z+3x-3z+3y-3x}{\left(x-z\right)\left(y-z\right)\left(y-x\right)}=\frac{z-y}{\left(x-z\right)\left(y-z\right)\left(y-x\right)}\)

\(\frac{-\left(y-x\right)}{\left(x-z\right)\left(y-z\right)\left(y-x\right)}=\frac{-1}{\left(x-z\right)\left(y-z\right)}=\frac{1}{\left(x-z\right)\left(x-y\right)}\)

Chúc bạn học tốt !!!

YangJiNguyen
Xem chi tiết
bí mật ra
Xem chi tiết
Mun Amie
6 tháng 7 2023 lúc 15:04

Đặt \(\dfrac{1}{a}=\dfrac{1}{x+y},\dfrac{1}{b}=\dfrac{1}{y+z},\dfrac{1}{c}=\dfrac{1}{z+x}\)

Đề trở thành: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\), tính \(P=\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) Tương đương \(ab+bc=-ac\)

\(P=\dfrac{b^3c^3+a^3c^3+a^3b^3}{a^2b^2c^2}=\dfrac{\left(ab+bc\right)\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}=\dfrac{-ac\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}\)

\(=\dfrac{a^2c^2-a^2b^2+ab^2c-b^2c^2}{ab^2c}=\dfrac{ac}{b^2}-\dfrac{a}{c}+1-\dfrac{c}{a}\)\(=ac\left(\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\right)-\dfrac{a}{c}+1-\dfrac{c}{a}\) (do \(\dfrac{1}{b}=-\dfrac{1}{a}-\dfrac{1}{c}\) tương đương \(\dfrac{1}{b^2}=\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\)

\(=3\)

Vậy P=3

thieu muoi =)))
Xem chi tiết
Vũ Ngọc Minh Anh
Xem chi tiết
soyeon_Tiểubàng giải
28 tháng 2 2017 lúc 21:20

+) x+y+z=0 => \(\left\{\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)

\(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=-1\)

+) x + y + z \(\ne0\)

Áp dụng t/c của dãy tỉ số = nhau ta có:

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{\left(y+z-x\right)+\left(z+x-y\right)+\left(x+y-z\right)}{x+y+z}\)\(=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow\left\{\begin{matrix}y+z-x=x\\z+x-y=y\\x+y-z=z\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}y+z=2x\\z+x=2y\\x+y=2z\end{matrix}\right.\)

\(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=8\)

Quốc Huy
Xem chi tiết
Phạm Phú Hoàng Long
12 tháng 11 2017 lúc 8:04

thanghoa

Phạm Phú Hoàng Long
12 tháng 11 2017 lúc 8:04

đúng rùi đó

huỳnh ny
12 tháng 11 2017 lúc 9:56

Sai leu

Nii-chan
Xem chi tiết