Hình thang ABCD có AB//CD, A=3D. Số đo của góc A là
Hình thang ABCD(AB//CD) có góc A=3D tính số đo góc D
có góc A + góc D =180o (trong cùng phía bù nhau)
mà góc A = 3 góc D
ta có 3 góc D + góc D=180o
4D=180o
góc D = 45 độ
Cho hình thang ABCD ( AB//CD) có A=3D, B=C, AB= căn 2 cm, BC=3cm, CD= 4cm
1. CMR: A+D=B+C
2. Tính số đo các góc của hình thang
3. Tính đường cao và S(ABCD)
1: AB//CD
=>góc A+góc D=180 độ và góc B+góc C=180 độ
=>góc A+góc D=góc B+góc C
2: góc A+góc D=180 độ
góc A=3*góc D
=>góc A=3/4*180=135 độ và góc D=180-135=45 độ
góc B=góc C
góc B+góc C=180 độ
=>góc B=góc C=180/2=90 độ
Cho hình thang ABCD ( AB//CD) có A=3D, B=C, AB= căn 2 cm, BC=3cm, CD= 4cm
1. CMR: A+D=B+C
2. Tính số đo các góc của hình thang
3. Tính đường cao và S(ABCD)
thanks các bạn
1. Vì ABCD là hình thang và AB // CD nên góc A + góc D = góc B + góc C = 180 độ
2. Ta có : \(\begin{cases}\widehat{A}+\widehat{B}=180^o\\\widehat{A}=3\widehat{B}\end{cases}\) \(\Rightarrow4\widehat{B}=180^o\Rightarrow\widehat{B}=45^o\Rightarrow\widehat{A}=45^o.3=135^o\)
\(\begin{cases}\widehat{B}+\widehat{C}=180^o\\\widehat{B}=\widehat{C}\end{cases}\) \(\Rightarrow\widehat{B}=\widehat{C}=\frac{180^o}{2}=90^o\)
3. Đường cao hình thang chính bằng cạnh BC = 3 cm
\(S_{ABCD}=\frac{1}{2}\left(AB+CD\right).BC=\frac{1}{2}.\left(4+\sqrt{2}\right).3=\frac{12+3\sqrt{2}}{2}\) (cm2)
cho hình thang cân ABCD(AB//CD)có số đo góc là A=70độ. số đo các góc còn lại của hình thang cânABCD là?
Vì ABCD là htc nên AB//CD và \(\left\{{}\begin{matrix}\widehat{A}=\widehat{C}=70^0\\\widehat{B}=\widehat{D}=180^0-\widehat{A}=110^0\left(trong.cùng.phía\right)\end{matrix}\right.\)
góc B = 70 độ ( 2 góc ở đáy )
góc C = góc D = 110 độ
help help:
cho hình thang ABCD có A=3D, B=C, AB=√2cm,AB= 3cm, Cd =4cm
CMR: a) A+D=C+B
b) Tính số đo các góc của hình thang
c) tính đường cao AH của hình thang và S(ABCD)
b) do A=3D mà A+D=180=>(A/3)+D=180=>\(\frac{A+D}{3+1}=\frac{180}{4}=45\)
=>A=45x3=135;D=45
=>A=135;B=90;C=90;D=45
a)do AB//CD nên B+C=180 mà B=C=>B=C=180:2=90
=> A+D=360-180=180
=>A+D=B+C
c) Do B=C=AHC=90 nên ABCH là hình chữ nhật
=> DH=CD-HC=CD-AB=4-căn2
=> S=(căn 2 +4).(4-căn2)=42-2=14(sử dụng hàng đẳng thức thứ 3)
Cho hình thang ABCD (AB//CD) có A=3D, B=C, AB=2cm, AD=3cm, DC=4cm
a) C/m A+D=B+C
b) Tính số đo các góc hình thang
c) Tính đường cao và diện tích hình thang
jup mik bài này vs mik đang rất gấp, mik sẽ tick cho ai nhanh và hợp lí nhất:
Cho hình thang ABCD (AB//CD) có A=3D, B=C, AB= căn 2 cm, BC=3cm, CD=4cm
a) CMR: A+D=B+C
b) Tính số đo các góc của hình thang
c) Tính đường cao AH và S của hình thang ABCD (S là diện tích)
a/Vì AB//CD(gt)
->góc ABD=góc BDC(so le trong)
-Xét tam giác DAb và tam giác CBD có:
góc DBC =góc DBC(gt) }-->
góc ABD =góc BDC(cmt) }
->ĐPCM
b/Vì tam giác ....đồng dạng với....(cmt)
->AB/BD=BD/BC=AD/BC(cạnh tương ứng tỉ lệ)
Mà đã có AD,AB,BC thì bạn tính nốt ra
c/Vì tam giác ....đồng dạng với....(cmt) với tỉ số đòng dạng AD/BC=3/4
->diện tích DAB/diên tích CBD =(3/4)^2=9/16->diên tích CBD= diện tích DAB:9/16
Mà diện tích DAB = 5cm ^2(gt)
->diên tích CBD=......
Cho hình thang cân ABCD ( ab//cd) có góc A = góc 3D . tính các góc của hình thang cân
Ta có: \(\widehat{A}+\widehat{D}=180^o\)
Mà \(\widehat{A}=3\widehat{D}\)
\(\Rightarrow\widehat{A}=135^o;\widehat{D}=45^o\)
Ta có:\(\widehat{A}=\widehat{B}\);\(\widehat{C}=\widehat{D}\)
Bài 1: Cho hình thang cân ABCD ( AB// CD ) có góc A= 2 góc C. Tính số đo các góc hình thang
Bài 2: Cho hình thang cân ABCD ( AB// CD ) có góc A= 3 góc D. Tính số đo các góc của hình thang
Bài 3: Cho hình tam giác ABC cân tại A. Qua điểm M trên cạnh AB kẻ đường thằng song song với BC cắt cạnh ACtại N
1, Tứ giác BMNC là hình gì? Vì sao?
2, So sánh diện tích MNB và diện tích MNC
3, CM diện tích ABN= diện tích ACM
Bafi1: Do AB // CD ( GT )
⇒ˆA+ˆC=180o
⇒2ˆC+ˆC=180o
⇒3ˆC=180o
⇒ˆC=60o
⇒ˆA=60o.2=120o
Do ABCD là hình thang cân
⇒ˆC=ˆD
Mà ˆC=60o
⇒ˆD=60o
AB // CD ⇒ˆD+ˆB=180o
⇒ˆB=180o−60o=120o
Vậy ˆA=ˆB=120o;ˆC=ˆD=60o
Bài 2:
Ta có; AB//CD
\(\Rightarrow\)góc BAD+ góc ADC= \(180^o\)
^A=3. ^D \(\Rightarrow\)\(\dfrac{A}{3}\)=^D
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{A}{3}=\dfrac{D}{1}=\dfrac{A+D}{3+1}=\dfrac{180^O}{4}=45^O\)
\(\Rightarrow\)^A= \(135^O\)
\(\Rightarrow\)^D=\(45^o\)
\(\Rightarrow B=A=135^o\)
\(\Rightarrow C=D=45^o\)