Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ĐIỀN VIÊN
Xem chi tiết
⭐Hannie⭐
21 tháng 12 2022 lúc 20:34

ta có : `x/2 = y/3 = z/4=> (2x)/4 =(3y)/9 = z/4`

`=> (2x)/4 =(3y)/9 = z/4` và `2x + 3y - z = 27`

Áp dụng t/c dãy tỉ số bằng nhau ta có:

`(2x)/4 =(3y)/9 = z/4 =(2x + 3y - z)/(4+9-4)=27/9=3`

`=>x/2=3=>x=3.2=6`

`=>y/3=3=>x=3.3=9`

`=>z/4=3=>z=3.4=12`

Xem chi tiết
Xem chi tiết
Phương Nguyễn Hồng
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 1 2022 lúc 10:23

\(\Leftrightarrow xy=63\)

\(\Leftrightarrow\left(x,y\right)\in\left\{\left(1;63\right);\left(3;21\right);\left(7;9\right);\left(-63;-1\right);\left(-21;-3\right);\left(-9;-7\right)\right\}\)

letridung
Xem chi tiết
Thanh Tùng DZ
4 tháng 7 2017 lúc 18:15

2.

a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\)

\(\Rightarrow x=6;y=8;z=10\)

b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{18}=\frac{y}{24}\)( 1 )

\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{24}=\frac{z}{32}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{18}=\frac{y}{24}=\frac{z}{32}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}=\frac{3x-2y-z}{54-48-32}=\frac{13}{-26}=\frac{-1}{2}\)

\(\Rightarrow x=-9;y=-12;z=-16\)

3.

a) \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)

\(\Rightarrow x=12;y=28;z=8\)

b) x : y : z = 2 : 5 : 7

\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)'

\(\Rightarrow x=6;y=15;z=21\)

Kaito
4 tháng 7 2017 lúc 18:45

2) a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{5z}{25}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\) (theo t/c dãy tỉ số bằng nhau)

=> x = 2.3 = 6 ; y = 2.4 = 8; z = 2.5 = 10

b, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{12}=\frac{z}{16}\)

\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\Rightarrow\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\) (theo t/c của dãy tỉ số bằng nhau)

=> x=(-1).9=-9 ; y=(-1).12=-12 ; z=(-1).16=-16

c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)

Ta có: xy+yz+zx=104

=> (2k)(3k) + (3k)(4k) + (4k)(2k) = 104

=> 6k2 + 12k2 + 8k2 = 104

=> k2(6+12+8) = 104

=> 26k2  = 104

=> k2 = 4

=> k = ±2

Với k = 2 thì \(\hept{\begin{cases}x=2.2=4\\y=2.3=6\\z=2.4=8\end{cases}}\)

Với k = -2 thì \(\hept{\begin{cases}x=2.\left(-2\right)=-4\\y=\left(-2\right).3=-6\\z=\left(-2\right).4=-8\end{cases}}\)

3) a, Đặt k=x/3=y/7=z/2

\(k=\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\Rightarrow k^2=\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{4}=\frac{2x^2}{18}=\frac{y^2}{49}=\frac{3z^2}{12}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)

=> k2 = 4 => k = ±2

Với k = 2 thì \(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=4\\\frac{y}{3}=2\Rightarrow y=6\\\frac{z}{4}=2\Rightarrow z=8\end{cases}}\)

Với k = -2 thì \(\hept{\begin{cases}\frac{x}{2}=-2\Rightarrow x=-4\\\frac{y}{3}=-2\Rightarrow y=-6\\\frac{z}{4}=-2\Rightarrow z=-8\end{cases}}\)

b, \(x:y:z=2:5:7\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)

=> x = 2.3 = 6 ; y = 5.3 = 15 ; z = 7.3 = 21

Kaito
4 tháng 7 2017 lúc 18:54

Sửa lại bài 3a

Với k = 2 thì \(\hept{\begin{cases}x=2.3=6\\y=2.7=14\\z=2.2=4\end{cases}}\)

Với k=-2 thì \(\hept{\begin{cases}x=\left(-2\right).3=-6\\y=\left(-2\right).7=-14\\z=\left(-2\right).2=-4\end{cases}}\)

nguyễn
Xem chi tiết
HT.Phong (9A5)
28 tháng 7 2023 lúc 7:20

Ta có: 

\(x^4=y^4\)

\(\Rightarrow x^4-y^4=0\)

\(\Rightarrow\left(x^2\right)^2-\left(y^2\right)^2=0\)

\(\Rightarrow\left(x^2-y^2\right)\left(x^2+y^2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2-y^2=0\\x^2+y^2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-y=0\\x+y=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)

_______________

Ta có: 

\(x^5=y^5\)

\(\Rightarrow x^5-y^5=0\)

\(\Rightarrow x-y=0\)

\(\Rightarrow x=y\)

Nguyen Quoc Huy
Xem chi tiết
Thai Nguyen
Xem chi tiết
Nguyễn Thị Hồng Nhung
14 tháng 9 2017 lúc 17:36

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)

Áp dụng t.c của dãy tỉ só bằng nhau,ta có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y}{3+4}=\dfrac{16}{7}\)

=>\(x=\dfrac{16}{7}.3=\dfrac{48}{7}\)

\(y=\dfrac{16}{7}.4=\dfrac{64}{7}\)

\(z=\dfrac{16}{7}.5=\dfrac{80}{7}\)

Vậy...

Các câu sau tương tự

Nguyễn Huy Tú
14 tháng 3 2020 lúc 10:56

ADTC dãy tỉ số bằng nhau ta cs

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x^2+y^2}{2^2+3^2}=\frac{52}{13}=4\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=4\\\frac{y}{3}=4\\\frac{z}{4}=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\y=12\\z=16\end{matrix}\right.\)

Khách vãng lai đã xóa
Bùi Hùng Cừơng
14 tháng 3 2020 lúc 14:55

d, \(\frac{x}{3}=\frac{y}{4}\)\(x^3-y^3=-37\)

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{3x}{9}=\frac{3y}{12}\)

-Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{3x}{9}=\frac{3y}{12}=\frac{3x-3y}{9-12}=\frac{-37}{-3}=\frac{37}{3}\)

Do đó:

\(\frac{3x}{9}=\frac{37}{3}\Leftrightarrow\frac{x}{3}=\frac{37}{3}\Rightarrow x=\frac{3\times37}{3}=37\)

\(\frac{3y}{12}=\frac{37}{3}\Leftrightarrow\frac{y}{4}=\frac{37}{3}\Rightarrow y=\frac{4\times37}{3}=\frac{148}{3}\)

Vây x = 37 , y = \(\frac{148}{3}\)

Khách vãng lai đã xóa
nguyen ton vu
Xem chi tiết
Dương Lam Hàng
18 tháng 8 2018 lúc 14:31

a) \(\frac{x}{5}=\frac{y}{3};\frac{y}{2}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)

Theo tính chất dãy tỉ số bằng nhau

Ta có: \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

\(\Rightarrow x=2\times10=20\)

     \(y=2\times6=12\)

    \(z=2\times21=42\)

Vậy x = 20; y = 12 ; z = 42

b) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{z-y}{5-4}=\frac{-6}{1}=-6\)

\(\Rightarrow x=\left(-6\right)\times3=-18\)

     \(y=\left(-6\right)\times4=-24\)

     \(z=\left(-6\right)\times5=-30\)

Vậy x = -18; y = -24; z = -30