\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Áp dụng t.c của dãy tỉ só bằng nhau,ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y}{3+4}=\dfrac{16}{7}\)
=>\(x=\dfrac{16}{7}.3=\dfrac{48}{7}\)
\(y=\dfrac{16}{7}.4=\dfrac{64}{7}\)
\(z=\dfrac{16}{7}.5=\dfrac{80}{7}\)
Vậy...
Các câu sau tương tự
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x^2+y^2}{2^2+3^2}=\frac{52}{13}=4\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=4\\\frac{y}{3}=4\\\frac{z}{4}=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\y=12\\z=16\end{matrix}\right.\)
d, \(\frac{x}{3}=\frac{y}{4}\) và \(x^3-y^3=-37\)
Có \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{3x}{9}=\frac{3y}{12}\)
-Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3x}{9}=\frac{3y}{12}=\frac{3x-3y}{9-12}=\frac{-37}{-3}=\frac{37}{3}\)
Do đó:
\(\frac{3x}{9}=\frac{37}{3}\Leftrightarrow\frac{x}{3}=\frac{37}{3}\Rightarrow x=\frac{3\times37}{3}=37\)
\(\frac{3y}{12}=\frac{37}{3}\Leftrightarrow\frac{y}{4}=\frac{37}{3}\Rightarrow y=\frac{4\times37}{3}=\frac{148}{3}\)
Vây x = 37 , y = \(\frac{148}{3}\)