Tìm số nguyên n để biểu thức A = 3n+10/ n+2 nhận giá trị nguyên
Tìm số nguyên n để biểu thức A nhận giá trị nguyên
A= 2n+7/n-2
A= 3n+2/n-1
Tìm các giá trị nguyên n để biểu thức sau nhận giá trị nguyên 3n+1/3n-4
\(\dfrac{3n+1}{3n-4}\left(n\in Z\right)\\ =\dfrac{3n-4+5}{3n-4}=1+\dfrac{5}{3n-4}\)
Để biểu thức đạt gt nguyên thì : \(\dfrac{5}{3n-4}\in Z\)
\(=>3n-4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\\ =>3n\in\left\{5;3;9;-1\right\}\\ =>n\in\left\{\dfrac{5}{3};1;3;-\dfrac{1}{3}\right\}\)
Do n nguyên -> Kết luận : \(n\in\left\{1;3\right\}\)
\(\dfrac{3n+1}{3n-4}\) \(=\dfrac{3n-4+5}{3n-4}\) \(=1+\dfrac{5}{3n-4}\)
Để biểu thức nhận giá trị nguyên thì \(5⋮\left(3n-4\right)\)
\(\Rightarrow\left(3n-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(3n-4\) | \(-5\) | \(-1\) | \(1\) | \(5\) |
\(n\) | \(-\dfrac{1}{3}\) | \(1\) | \(\dfrac{5}{3}\) | \(3\) |
Vậy \(x=1\) hoặc \(x=3\) thì biểu thức \(\dfrac{3n+1}{3n-4}\) nhận giá trị nguyên
A = \(\dfrac{3n+1}{3n-4}\) (đkxđ n \(\ne\) \(\dfrac{4}{3}\))
A \(\in\) Z ⇔ 3n + 1 ⋮ 3n - 4 ⇔ 3n - 4 + 5 ⋮ 3n - 4 ⇔ 5 ⋮ 3n - 4
⇔ 3n - 4 \(\in\) { - 5; -1; 1; 5} ⇔ n \(\in\) { - \(\dfrac{1}{3}\); 1; \(\dfrac{5}{3}\); 3}
Vì n \(\in\) Z nên n \(\in\) { 1; 3}
Tìm giá trị nguyên của n
a/ Để giá trị của biểu thức 3n3 + 10n2 – 5 chia hết cho giá trị của biểu thức 3n+1.
b/ Để giá trị của biểu thức 10n2 + n – 10 chia hết cho giá trị của biểu thức n – 1 .
a) Cho 3n +1=0 => n=\(\frac{-1}{3}\)
Sau đó thay vào biểu thức 3n3+10n2-5 sẽ tìm ra n=-4
b) Cho n-1=0 => n=1
Sau đó thay vào biểu thức 10n2+n -10 sẽ tìm ra n=1
Cho mình nha!!! <3
Tìm giá trị nguyên của n
a/ 7 chia hết cho n+2
b/ n+1 chia hết cho n-3
c/ Để giá trị của biểu thức \(3n^3+10n^2-5\) chia hết cho giá trị của biểu thức 3n+1
d/ Để giá trị của biểu thức \(10n^2+n-10\) chia hết cho giá trị của biểu thức n-1
a: =>\(n+2\in\left\{1;-1;7;-7\right\}\)
=>\(n\in\left\{-1;-3;5;-9\right\}\)
b: =>n-3+4 chia hết cho n-3
=>\(n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{4;2;5;1;7;-1\right\}\)
c: =>3n^3+n^2+9n^2-1-4 chia hết cho 3n+1
=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)
d: =>10n^2-10n+11n-11+1 chia hết cho n-1
=>\(n-1\in\left\{1;-1\right\}\)
=>\(n\in\left\{2;0\right\}\)
tìm các giá trị nguyên của n để giá trị của biểu thức \(A=\dfrac{2n^2+3n+3}{2n-1}\) có giá trị là số nguyên
Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{1;0;3;-2\right\}\)
`2n^2+3n+3 | 2n-1`
`-` `2n^2-n` `n+2`
------------------
`4n+3`
`-` `4n-2`
------------
`5`
`<=> (2n^2+3n+3) : (2n-1)=5`
`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)
`+, 2n-1=1=>2n=2=>n=1`
`+, 2n-1=-1=>2n=0=>n=0`
`+, 2n-1=5=>2n=6=>n=3`
`+,2n-1=-5=>2n=-4=>n=-2`
vậy \(n\in\left\{1;0;3;-2\right\}\)
Tìm tất cả các giá trị nguyên của n để biểu thức A=3n+5/n+4 có giá trị là số nguyên
Để A là số nguyên thì 3n+5 chia hết cho n+4
=>3n+12-7 chia hết cho n+4
=>n+4 thuộc {1;-1;7;-7}
=>n thuộc {-3;-5;3;-11}
Tìm tất cả số nguyên để biểu thức:
a) A = 12n + 17 nhận giá trị nguyên b) A = 10n + 9 nhận giá trị nguyên
3n +1 5n - 1
a) A nguyên khi (12n + 17) ⋮ (3n + 1)
Ta có:
12n + 17 = 12n + 4 + 13
= 4(3n + 1) + 13
Để (12n + 17) ⋮ (3n + 1) thì 13 ⋮ (3n + 1)
⇒ 3n + 1 ∈ Ư(13) = {-13; -1; 1; 13}
⇒ 3n ∈ {-14; -2, 0; 12}
⇒ n ∈ {-14/3; -2/3; 0; 4}
Mà n là số nguyên
⇒ n ∈ {0; 4}
b) Để A là số nguyên thì ⋮ (10n + 9) (5n - 1)
Ta có:
10n + 9 = 10n - 2 + 11
= 2(5n - 1) + 11
Để (10n + 9) ⋮ (5n - 1) thì 11 ⋮ (5n - 1)
⇒ 5n - 1 ∈ Ư(11) = {-11; -1; 1; 11}
⇒ 5n ∈ {-10; 0; 2; 12}
⇒ n ∈ {-2; 0; 2/5; 12/5}
Mà n là số nguyên
⇒ n ∈ {-2; 0}
Cho biểu thức : A=\(\frac{3n-5}{n+4}\)với n thuộc Z
a) Số nguyên n phải có điều kiện gì để A là phân số ?
b) Tìm các số nguyên n để A nhận giá trị nguyên?
a)Để A là phân số \(\Leftrightarrow n+4\ne0\Leftrightarrow n\ne-4.\)
b) A= \(\frac{3n-5}{n+4}=\frac{3n+12-17}{n+4}=3-\frac{17}{n+4}.\)
A nhận giá trị nguyên <=>\(\frac{17}{n+4}nguyên\)
\(\Rightarrow n+4\inƯ\left(17\right)=\hept{\begin{cases}\\\end{cases}1;-1;17;-17}.\)
\(\Rightarrow n=-3;-5;13;-21\)
học tốt
Tìm số nguyên để biểu thức A=n-3/n-2 nhận giá trị nguyên
Ta có:
\(A=\dfrac{n-3}{n-2}=\dfrac{n-2-1}{n-2}=1-\dfrac{1}{n-2}\)
Để A nhận giá trị nguyên thì \(1⋮\left(n-2\right)\) hay \(\left(n-2\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\left(+\right)\) \(n-2=1\)
\(\Rightarrow n=3\)
\(\left(+\right)\) \(n-2=-1\)
\(\Rightarrow n=1\)
Vậy \(n\in\left\{3;1\right\}\)
\(A=\dfrac{n-3}{n-2}=\dfrac{\left(n-2\right)-1}{n-2}=\dfrac{n-2}{n-2}-\dfrac{1}{n-2}=1-\dfrac{1}{n-2}\)
Để A nhận giá trị nguyên thì \(\dfrac{1}{n-2}\) nguyên
\(=>1⋮n-2\)
\(=>n-2\in\text{Ư}\left(1\right)=\left\{-1;1\right\}\)
\(=>n\in\left\{1;3\right\}\)