Mọi người ơi, giúp em giải thật chi tiết từng bước bài này với ạ. Em cảm ơn mọi người rất rất nhiều ạ!
\(\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\) Với x>0; x khác 1
Mọi người ơi, giúp em giải bài này chi tiết với ạ, em cảm ơn nhiều.
\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{2}{x-\sqrt{x}}\right):\dfrac{1}{\sqrt{x}-1}\)
Mọi người giúp em giải nhanh bài này với ạ, em đang cần gấp ạ. Em cảm ơn nhiều.
a) A= \(\left(\dfrac{x+14\sqrt{x}-5}{x-25}+\dfrac{\sqrt{x}}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)Với x lớn hơn hoặc bằng 0, x khác 25
\(a,A=\left(\dfrac{x+14\sqrt{x}-5}{x-25}+\dfrac{\sqrt{x}}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)
\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(\Rightarrow A=\dfrac{x+14\sqrt{x}-5+x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(\Rightarrow A=\dfrac{2x+9\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(\Rightarrow A=\dfrac{2x+10\sqrt{x}-\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
\(\Rightarrow A=\dfrac{2\sqrt{x}\left(\sqrt{x}+5\right)-\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
\(\Rightarrow A=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
\(\Rightarrow A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+2}\)
giúp em bài này với ạ. có thể làm chi tiết nhất được ko ạ
em cảm ơn nhiều ạ
cho B=\(\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\) tìm ĐKXĐ
tính B với x=3
tìm x để \(\left|B\right|\) =\(\dfrac{1}{2}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b) Ta có: \(B=\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\)
\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-1}{\sqrt{x}+1}\)
Thay x=3 vào B, ta được:
\(B=\dfrac{-1}{\sqrt{3}+1}=\dfrac{-\sqrt{3}+1}{2}\)
Xác định các giá trị của m để phương trình x^2 -x+1-m =0 có hai nghiệm x1;x2 thỏa mãn đẳng thức \(5.\left(\dfrac{1}{x1}+\dfrac{1}{x2}\right)-x1.x2+4=0\)
Mọi người ơi, giúp em bài này với ạ, em cần rất gấp ạ, em cảm ơn rất nhiều ạ. (Nếu có thể giải chí tiết phần thay S và P vào đẳng thức được không ạ? Em cảm ơn rất nhiều ạ.)
\(x^2-x+1-m=0\left(1\right)\\ \text{PT có 2 nghiệm }x_1,x_2\\ \Leftrightarrow\Delta=1-4\left(1-m\right)\ge0\\ \Leftrightarrow4m-3\ge0\Leftrightarrow m\ge\dfrac{3}{4}\\ \text{Vi-ét: }\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=1-m\end{matrix}\right.\\ \text{Ta có }5\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+4=0\\ \Leftrightarrow5\cdot\dfrac{x_1+x_2}{x_1x_2}-x_1x_2+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m-1+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m+3=0\\ \Leftrightarrow5+\left(1-m\right)\left(m+3\right)=0\\ \Leftrightarrow m^2+2m-8=0\\ \Leftrightarrow m^2-2m+4m-8=0\\ \Leftrightarrow\left(m-2\right)\left(m+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(n\right)\\m=-4\left(l\right)\end{matrix}\right.\)
Vậy $m=2$
\(Cho\) \(x=\dfrac{1}{3}\left(1+\sqrt[3]{\dfrac{12+\sqrt{135}}{3}}+\sqrt[3]{\dfrac{12-\sqrt{135}}{3}}\right)\). \(Tính\) \(M=\left(9x^3-9x^2-3\right)^2\)
Mọi người giúp em với ạ, em cảm ơn ^^
Mọi người ơi, giúp mình nhanh bài này với ạ, mình đang cần gấp ạ. Cảm ơn mng nhiều!!
\(\left(\dfrac{1}{\sqrt{a}-2}+\dfrac{1}{\sqrt{a}+2}\right):\left(1-\dfrac{2}{\sqrt{a}+2}\right)\)
\(=\dfrac{\sqrt{a}+2+\sqrt{a}-2}{a-4}:\dfrac{\sqrt{a}+2-2}{\sqrt{a}+2}\)
\(=\dfrac{2\sqrt{a}}{a-4}\cdot\dfrac{\sqrt{a}+2}{\sqrt{a}}=\dfrac{2}{\sqrt{a}-2}\)
\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{2}{x-\sqrt{x}}\right):\dfrac{1}{\sqrt{x}-1}\)
Giups em giải nhanh bài này với ạ! Em cảm ownnhieeuf ạ
\(B=\dfrac{x+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{1}=\dfrac{x+2}{\sqrt{x}}\)
Mọi người giúp em với em cần rất gấp ạ
Tìm GTNN của M=\(\dfrac{2\left(\sqrt{x}+2\right)}{\sqrt{x}-1}\) với x≥0,x≠1,x≠4
Biểu thức này ko tồn tại cả min lẫn max
\(\dfrac{1}{M}=\dfrac{\sqrt{x}-1}{2\sqrt{x}+4}=\dfrac{-\dfrac{1}{4}\left(2\sqrt{x}+4\right)+\dfrac{\sqrt{x}}{2}}{2\sqrt{x}+4}=-\dfrac{1}{4}+\dfrac{\sqrt{x}}{4\left(\sqrt{x}+2\right)}\)
Do \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x}+2>0\end{matrix}\right.\) \(\Rightarrow\dfrac{\sqrt{x}}{4\left(\sqrt{x}+2\right)}\ge0\)
\(\Rightarrow\dfrac{1}{M}\ge-\dfrac{1}{4}\)
Dấu "=" xảy ra khi \(x=0\)
TÍNH ĐẠO HÀM :
\(y=\left(1-3x\right).\sqrt{x-3}\)
\(y=\sqrt{2x+1}+\dfrac{1}{x+1}\)
\(y=\sqrt{\dfrac{1-x}{1+x}}\)
\(y=cos5x.co7x\)
\(y=cosx.sin^2x\)
\(y=tan^42x\)
\(y=\dfrac{2x}{sinx+cosx}\)
MỌI NGƯỜI GIÚP MÌNH VỚI Ạ MÌNH CẢM ƠN
1/ \(y'=\left(1-3x\right)'\sqrt{x-3}+\left(1-3x\right)\left(\sqrt{x-3}\right)'=-3\sqrt{x-3}+\dfrac{1}{2\sqrt{x-3}}\left(1-3x\right)\)
2/ \(y'=\dfrac{1}{\sqrt{2x+1}}-\dfrac{1}{\left(x+1\right)^2}\)
3/ \(y'=\dfrac{1}{2}.\sqrt{\dfrac{1+x}{1-x}}.\left(\dfrac{1-x}{1+x}\right)'=\dfrac{1}{2}\sqrt{\dfrac{1+x}{1-x}}.\dfrac{-2}{\left(1+x\right)^2}=-\sqrt{\dfrac{1+x}{1-x}}.\dfrac{1}{\left(1+x\right)^2}\)
4/ \(y'=\left(\cos5x\right)'.\cos7x+\cos5x.\left(\cos7x\right)'=-5\sin5x.\cos7x-7\cos5x\sin7x\)
5/ \(y'=\left(\cos x\right)'\sin^2x+\cos x\left(\sin^2x\right)'=-\sin^3x+2\sin x.\cos^2x\)
6/ \(y'=\left(\tan^42x\right)'=4.\tan^32x.\dfrac{2}{\cos^22x}\)
7/ \(y'=\dfrac{2\sin x+2\cos x-2x.\cos x+2x\sin x}{\left(\sin x+\cos x\right)^2}\)
Ờm, bạn tự rút gọn nhé :) Mình đang hơi lười :b