\(\dfrac{ }{ }\)
\(\dfrac{\dfrac{\dfrac{9}{9}}{\dfrac{9}{9}}}{\dfrac{\dfrac{9}{9}}{\dfrac{9}{9}}}+\dfrac{\dfrac{\dfrac{9}{9}}{\dfrac{9}{9}}}{\dfrac{\dfrac{9}{9}}{\dfrac{9}{9}}}=\)
\(\dfrac{\dfrac{\dfrac{9}{9}}{\dfrac{9}{9}}}{\dfrac{\dfrac{9}{9}}{\dfrac{9}{9}}}\) + \(\dfrac{\dfrac{\dfrac{9}{9}}{\dfrac{9}{9}}}{\dfrac{\dfrac{9}{9}}{\dfrac{9}{9}}}\) = 1 + 1 = 2
Giúp mk với
Câu 1:
Cho A = \(\dfrac{1}{\dfrac{99}{\dfrac{1}{2}+}}+\dfrac{2}{\dfrac{98}{\dfrac{1}{3}+}}+\dfrac{3}{\dfrac{97}{\dfrac{1}{4}+....}}+...+\dfrac{99}{\dfrac{1}{\dfrac{1}{100}}}\).
B =\(\dfrac{92}{\dfrac{1}{45}+}-\dfrac{1}{\dfrac{9}{\dfrac{1}{50}+}}-\dfrac{2}{\dfrac{10}{\dfrac{1}{55}+}}-\dfrac{3}{\dfrac{11}{\dfrac{1}{60}+....}}-...\dfrac{92}{\dfrac{100}{\dfrac{1}{500}}}\). Tính \(\dfrac{A}{B}\)
\(\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-}{1\dfrac{1}{6}-}\dfrac{\dfrac{1}{4}}{\dfrac{7}{8}+}\dfrac{+\dfrac{1}{5}}{0,7}\)
\(\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{1\dfrac{1}{6}-\dfrac{7}{8}+0,7}\\ =\dfrac{2\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}{7\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}-\dfrac{\dfrac{2}{6}-\dfrac{2}{8}+\dfrac{2}{10}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}\\ =\dfrac{2}{7}-\dfrac{2\left(\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{10}\right)}{7\left(\dfrac{1}{6}-\dfrac{1}{8}-\dfrac{1}{10}\right)}\\ =\dfrac{2}{7}-\dfrac{2}{7}=0\)
1)\(\dfrac{1}{2}+\dfrac{13}{19}-\dfrac{4}{9}+\dfrac{6}{19}+\dfrac{5}{18}\)
2)\(\dfrac{ }{\dfrac{-20}{23}+\dfrac{2}{3}-\dfrac{3}{23}+\dfrac{2}{5}+\dfrac{7}{15}}\)
3)\(\dfrac{ }{\dfrac{4}{3}+\dfrac{-11}{31}+\dfrac{3}{10}-\dfrac{20}{31}-\dfrac{2}{5}}\)
4)\(\dfrac{ }{\dfrac{5}{7}.\dfrac{5}{11}+\dfrac{5}{7}.\dfrac{2}{11}-\dfrac{5}{7}.\dfrac{14}{11}}\)
1) \(\dfrac{1}{2}+\dfrac{13}{19}-\dfrac{4}{9}+\dfrac{6}{19}+\dfrac{5}{18}\)
\(=\dfrac{1}{2}+\left(\dfrac{13}{19}+\dfrac{6}{19}\right)-\dfrac{4}{9}+\dfrac{5}{18}\)
\(=\dfrac{3}{2}-\dfrac{4}{9}+\dfrac{5}{18}\)
\(=\dfrac{19}{18}+\dfrac{5}{18}\)
\(=\dfrac{24}{18}\)
\(=\dfrac{4}{3}\)
2) \(\dfrac{-20}{23}+\dfrac{2}{3}-\dfrac{3}{23}+\dfrac{2}{5}+\dfrac{7}{15}\)
\(=\left(-\dfrac{20}{23}-\dfrac{3}{23}\right)+\dfrac{2}{3}+\dfrac{2}{5}+\dfrac{7}{15}\)
\(=-1+\dfrac{2}{3}+\dfrac{2}{5}+\dfrac{7}{15}\)
\(=-\dfrac{1}{3}+\dfrac{2}{5}+\dfrac{7}{15}\)
\(=\dfrac{1}{15}+\dfrac{7}{15}\)
\(=\dfrac{8}{15}\)
3) \(\dfrac{4}{3}+\dfrac{-11}{31}+\dfrac{3}{10}-\dfrac{20}{31}-\dfrac{2}{5}\)
\(=\left(\dfrac{-11}{31}-\dfrac{20}{31}\right)+\dfrac{4}{3}+\dfrac{3}{10}-\dfrac{2}{5}\)
\(=-1+\dfrac{4}{3}+\dfrac{3}{10}-\dfrac{2}{5}\)
\(=\dfrac{1}{3}+\dfrac{3}{10}-\dfrac{2}{5}\)
\(=\dfrac{1}{3}-\dfrac{1}{10}\)
\(=\dfrac{7}{30}\)
4) \(\dfrac{5}{7}.\dfrac{5}{11}+\dfrac{5}{7}.\dfrac{2}{11}-\dfrac{5}{7}.\dfrac{14}{11}\)
\(=\dfrac{5}{7}.\left(\dfrac{5}{11}+\dfrac{2}{11}-\dfrac{14}{11}\right)\)
\(=\dfrac{5}{7}.-\dfrac{7}{11}\)
\(=-\dfrac{35}{77}\)
\(=-\dfrac{5}{11}\)
Tính hợp lý
\(A= (\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\) B= \(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}}{\dfrac{1}{9}+\dfrac{2}{8}+\dfrac{3}{7}+...+\dfrac{8}{2}+\dfrac{9}{1}})\)
\(\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\dfrac{99}{1}\)
\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)
94-\(\dfrac{1}{7}-\dfrac{2}{8}-\dfrac{3}{9}-...-\dfrac{94}{100}\)
\(\dfrac{1}{35}+\dfrac{1}{40}+\dfrac{1}{45}+...+\dfrac{1}{500}\)
giúp mik nha mik cần gấp
Mình làm được một câu thôi, bạn dựa vào làm nha!
Tinh
a)M=\(\dfrac{2012-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{2012}{2020}}{\dfrac{1}{27}+\dfrac{1}{30}+\dfrac{1}{33}+...+\dfrac{1}{6060}}\)
b)N=\(\dfrac{\dfrac{1}{1.300}+\dfrac{1}{2.301} +\dfrac{1}{3.302}+...+\dfrac{1}{101.400}}{\dfrac{1}{1.102}+\dfrac{1}{2.103}+\dfrac{1}{3.104}+...+\dfrac{1}{299.400}}\)
`a)` Xét tử số phân số M :
\(2012-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{2012}{2020}\\ =\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...+\left(1-\dfrac{2012}{2020}\right)\\ =\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{2020}\\ =24\left(\dfrac{1}{27}+\dfrac{1}{30}+\dfrac{1}{33}+...+\dfrac{1}{6060}\right)\)
Ta được : \(M=\dfrac{24\left(\dfrac{1}{27}+\dfrac{1}{30}+\dfrac{1}{33}+...+\dfrac{1}{6060}\right)}{\dfrac{1}{27}+\dfrac{1}{30}+\dfrac{1}{33}+...+\dfrac{1}{6060}}=24\)
`b)` Xét tử số phân số N :
\(\dfrac{1}{1.300}+\dfrac{1}{2.301}+\dfrac{1}{3.302}+...+\dfrac{1}{101.400}\\ =\dfrac{1}{299}.\left(\dfrac{299}{1.300}+\dfrac{299}{2.301}+\dfrac{299}{3.302}+...+\dfrac{299}{101.400}\right)\\ =\dfrac{1}{299}.\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+\dfrac{1}{3}-\dfrac{1}{302}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)\)
Xét mẫu số phân số N :
\(\dfrac{1}{1.102}+\dfrac{1}{2.103}+\dfrac{1}{3.104}+...+\dfrac{1}{299.400}\\ =\dfrac{1}{101}.\left(\dfrac{101}{1.102}+\dfrac{101}{2.103}+\dfrac{101}{3.104}+...+\dfrac{101}{299.400}\right)\\ =\dfrac{1}{101}.\left(1-\dfrac{1}{102}+\dfrac{1}{2}-\dfrac{1}{103}+\dfrac{1}{3}-\dfrac{1}{104}+...+\dfrac{1}{299}-\dfrac{1}{400}\right)\)
\(=\dfrac{1}{101}.\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+\dfrac{1}{3}-\dfrac{1}{302}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)\)
Ta được: \(N=\dfrac{\dfrac{1}{299}\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+\dfrac{1}{3}-\dfrac{1}{302}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)}{\dfrac{1}{101}\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+\dfrac{1}{3}-\dfrac{1}{302}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)}\\ =\dfrac{\dfrac{1}{299}}{\dfrac{1}{101}}=\dfrac{101}{299}\)
Tính nhanh:
\(a,A=\dfrac{\dfrac{5}{4}+\dfrac{5}{5}+\dfrac{5}{7}-\dfrac{5}{11}}{\dfrac{10}{4}+\dfrac{10}{5}+\dfrac{10}{7}-\dfrac{10}{11}}\)\(b,B=\dfrac{2+\dfrac{6}{5}-\dfrac{6}{7}-\dfrac{6}{11}}{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}\)
giúp mình với
\(a,A=\dfrac{\dfrac{5}{4}+\dfrac{5}{5}+\dfrac{5}{7}-\dfrac{5}{11}}{\dfrac{10}{4}+\dfrac{10}{5}+\dfrac{10}{7}-\dfrac{10}{11}}\\ =\dfrac{5.\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{10.\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}\\ =\dfrac{5}{10}\\ =\dfrac{1}{2}\)
Vậy \(A=\dfrac{1}{2}\)
\(b,B=\dfrac{2+\dfrac{6}{5}-\dfrac{6}{7}-\dfrac{6}{11}}{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}\\ =\dfrac{3.\left(\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}\right)}{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}\\ =3\)
Vậy \(B=3\)
tính H = \(\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}:\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{500}}\)
\(\dfrac{1}{3}+\dfrac{2}{3}=\)
\(\dfrac{4}{5}+\dfrac{5}{6}=\)
\(\dfrac{4}{5}-\dfrac{3}{5}=\)
\(\dfrac{9}{8}-\dfrac{4}{2}=\)
\(\dfrac{8}{5}x\dfrac{5}{8}=\)
\(\dfrac{6}{7}x\dfrac{4}{7}=\)
\(\dfrac{4}{5}:\dfrac{4}{5}=\)
\(\dfrac{5}{5}:\dfrac{5}{5}=\)
a,
\(\dfrac{1}{3}+\dfrac{2}{3}=\dfrac{3}{3}=1\)
\(\dfrac{4}{5}+\dfrac{5}{6}=\dfrac{24}{30}+\dfrac{25}{30}=\dfrac{49}{30}\)
\(\dfrac{4}{5}-\dfrac{3}{5}=\dfrac{1}{5}\)
\(\dfrac{8}{5}x\dfrac{5}{8}=\dfrac{1}{1}=1\)
\(\dfrac{6}{7}x\dfrac{4}{7}=\dfrac{24}{49}\)
\(\dfrac{4}{5}:\dfrac{4}{5}=\dfrac{4}{5}x\dfrac{5}{4}=\dfrac{1}{1}=1\)
\(\dfrac{5}{5}:\dfrac{5}{5}=\dfrac{5}{5}x\dfrac{5}{5}=\dfrac{1}{1}=1\)
1) \(\dfrac{1}{3}+\dfrac{2}{3}=\dfrac{1+2}{3}=\dfrac{3}{3}=1\)
2) \(\dfrac{4}{5}+\dfrac{5}{6}=\dfrac{24}{30}+\dfrac{25}{30}=\dfrac{24+25}{30}=\dfrac{49}{30}\)
3) \(\dfrac{4}{5}-\dfrac{3}{5}=\dfrac{4-3}{5}=\dfrac{1}{5}\)
4) \(\dfrac{9}{8}-\dfrac{4}{2}=\dfrac{9}{8}-2=\dfrac{9}{8}-\dfrac{16}{8}=-\dfrac{7}{8}\)
5) \(\dfrac{8}{5}\times\dfrac{5}{8}=\dfrac{8\times5}{5\times8}=\dfrac{40}{40}=1\)
6) \(\dfrac{6}{7}\times\dfrac{4}{7}=\dfrac{6\times4}{7}=\dfrac{24}{7}\)
7) \(\dfrac{4}{5}:\dfrac{4}{5}=\dfrac{4}{5}\times\dfrac{5}{4}=\dfrac{4\times5}{5\times4}=\dfrac{20}{20}=1\)
8) \(\dfrac{5}{5}:\dfrac{5}{5}=\dfrac{5}{5}\times\dfrac{5}{5}=\dfrac{5\times5}{5\times5}=\dfrac{25}{25}=1\)