Phân tích đa thức thành nhân tử
a,16x-5x2-3
b, x4+64
c, 64x2+4y4
d, x5+x-1
1.Phân tích đa thức sau thành nhân tử
a,x2+4x-3
b,16x-5x2-3
c,2x2+3x-5
d,2x2+3x-5
b) \(16x-5x^2-3=5x\left(3-x\right)-\left(3-x\right)=\left(3-x\right)\left(5x-1\right)\)
c) \(2x^2+3x-5=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
d) \(2x^2+3x-5=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
1. Phân tích thành nhân tử
A) x4 + 2x3 + x2
B) x3 - x + 3x2y + 3xy2 + y3 - y
C) 5x2 - 10xy +5y2 - 20z2
2. Phân tích thành nhân tử
A) x2 + 5x -6
B) 5x2 + 5xy - x - y
C) 7x - 6x2 - 2
3.Phân tích thành nhân tử
A) x2 + 4 + 3
B) 2x2 + 3x -5
C) 16x - 5x2 - 3
4. Tìm x, bt
A) 5x ( x - 1 ) = x -1
B) 2( x + 5 ) -x2 - 5x = 0
Bài 2:
a: \(x^2+5x-6=\left(x+6\right)\left(x-1\right)\)
b: \(5x^2+5xy-x-y\)
\(=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-1\right)\)
c:\(-6x^2+7x-2\)
\(=-6x^2+3x+4x-2\)
\(=-3x\left(2x-1\right)+2\left(2x-1\right)\)
\(=\left(2x-1\right)\left(-3x+2\right)\)
1.
a) \(=x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\)
b) \(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
c) \(=5\left[\left(x^2-2xy+y^2\right)-4z^2\right]=5\left[\left(x-y\right)^2-4z^2\right]\)
\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)
2.
a) \(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
b) \(=5x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(5x-1\right)\)
c) \(=-\left[3x\left(2x-1\right)-2\left(2x-1\right)\right]=-\left(2x-1\right)\left(3x-2\right)\)
3.
b) \(=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
c) \(=-\left[5x\left(x-3\right)-1\left(x-3\right)\right]=-\left(x-3\right)\left(5x-1\right)\)
4.
a) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Bài 1: Phân tích đa thức thành nhân tử
a) x3-2x2-5x+6
b) x4+5x2+6
c) x3+4x2+5x+2
d) x4+324
bài 1:phân tích đa thức thành nhân tử
a,x4 +5x2 +9
b,x4 + 3x2 +4
c,2x4 - x2 -1
Bài 2:tìm x biết
a,(x+1) (x+2)(x+3)(x+4)= 120
b,(x-4x+3)(x2+6x +8) +24
Bài 1:
\(a,x^4+5x^2+9\\=(x^4+6x^2+9)-x^2\\=[(x^2)^2+2\cdot x^2\cdot3+3^2]-x^2\\=(x^2+3)^2-x^2\\=(x^2+3-x)(x^2+3+x)\)
\(b,x^4+3x^2+4\\=(x^4+4x^2+4)-x^2\\=[(x^2)^2+2\cdot x^2\cdot2+2^2]-x^2\\=(x^2+2)^2-x^2\\=(x^2+2-x)(x^2+2+x)\)
\(c,2x^4-x^2-1\\=2x^4-2x^2+x^2-1\\=2x^2(x^2-1)+(x^2-1)\\=(x^2-1)(2x^2+1)\\=(x-1)(x+1)(2x^2+1)\)
Bài 2:
\(a,\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=120\)
\(\Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\cdot\left[\left(x+2\right)\left(x+3\right)\right]=120\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=120\) (1)
Đặt \(x^2+5x+5=y\), khi đó (1) trở thành:
\(\left(y-1\right)\left(y+1\right)=120\)
\(\Leftrightarrow y^2-1=120\)
\(\Leftrightarrow y^2=121\)
\(\Leftrightarrow\left[{}\begin{matrix}y=11\\y=-11\end{matrix}\right.\)
+, TH1: \(y=11\Leftrightarrow x^2+5x+5=11\)
\(\Leftrightarrow x^2+5x-6=0\)
\(\Leftrightarrow x^2-x+6x-6=0\)
\(\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-6\end{matrix}\right.\left(\text{nhận}\right)\)
+, TH2: \(y=-11\Leftrightarrow x^2+5x+5=-11\)
\(\Leftrightarrow x^2+5x+16=0\)
\(\Leftrightarrow\left[x^2+2\cdot x\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]-\dfrac{25}{4}+16=0\)
\(\Leftrightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)
Ta thấy: \(\left(x+\dfrac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}\ge\dfrac{39}{4}>0\forall x\)
Mà \(\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)
\(\Rightarrow\) loại
Vậy \(x\in\left\{1;-6\right\}\).
\(b,\) Đề thiếu vế phải rồi bạn.
HELP ME!!!
Phân tích đa thức sau thành nhân tử bằng cách thêm bớt hạng tử, tách hạng tử
a, 6x2-11x
b, x7+x5+1
c, x8+x4+1
d, x3-5x+8-4
e, x5+x4+1
a. $6x^2-11x=x(6x-11)$
b. $x^7+x^5+1=(x^7-x)+(x^5-x^2)+x+x^2+1$
$=x(x^6-1)+x^2(x^3-1)+(x^2+x+1)$
$=x(x^3-1)(x^3+1)+x^2(x^3-1)+(x^2+x+1)$
$=(x^3-1)(x^4+x+x^2)+(x^2+x+1)$
$=(x-1)(x^2+x+1)(x^4+x^2+x)+(x^2+x+1)$
$=(x^2+x+1)[(x-1)(x^4+x^2+x)+1]$
$=(x^2+x+1)(x^5-x^4+x^3-x+1)$
c.
$x^8+x^4+1=(x^4)^2+2.x^4+1-x^4$
$=(x^4+1)^2-(x^2)^2$
$=(x^4+1-x^2)(x^4+1+x^2)$
$=(x^4+1-x^2)(x^4+2x^2+1-x^2)$
$=(x^4-x^2+1)[(x^2+1)^2-x^2]$
$=(x^4-x^2+1)(x^2+1-x)(x^2+1+x)$
d.
$x^3-5x+8-4=x^3-5x+4$
$=x^3-x^2+x^2-x-(4x-4)$
$=x^2(x-1)+x(x-1)-4(x-1)=(x-1)(x^2+x-4)$
e.
$x^5+x^4+1=(x^5-x^2)+(x^4-x)+x^2+x+1$
$=x^2(x^3-1)+x(x^3-1)+x^2+x+1$
$=(x^3-1)(x^2+x)+(x^2+x+1)$
$=(x-1)(x^2+x+1)(x^2+x)+(x^2+x+1)$
$=(x^2+x+1)[(x-1)(x^2+x)+1]$
$=(x^2+x+1)(x^3-x+1)$
Bài 1:phân tích đa thức thành nhân tử
a)x2-2x-4y2-4y e)x4+2x3+2x2+2x+1
b)x3+2x2+2x+1 f)x5+x4+x3+x2+x+1
c)x3-4x2+12x-27
d)a6-a4+2a3+2a2
Làm chi tiết giúp mình với ạ, cảm ơn
a) \(x^2-2x-4y^2-4y=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)
b) \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)
c) \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)=\left(x-3\right)\left(x^2-x+9\right)\)
d) \(a^6-a^4+2a^3+2a^2=a^2\left(a^4-a^2+2a+2\right)=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]=a^2\left(a+1\right)\left(a^3-a^2+2\right)=a^2\left(a+1\right)\left[a^3+a^2-2a^2+2\right]=a^2\left(a+1\right)\left[a^2\left(a+1\right)-2\left(a-1\right)\left(a+1\right)\right]=a^2\left(a+1\right)^2\left(a^2-2a+2\right)\)
a) Ta có: \(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
b) Ta có: \(x^3+2x^2+2x+1\)
\(=\left(x^3+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
d) Ta có: \(a^6-a^4+2a^3+2a^2\)
\(=a^2\left(a^4-a^2+2a+2\right)\)
\(=a^2\left[a^2\left(a^2-1\right)+\left(2a+2\right)\right]\)
\(=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]\)
\(=a^2\cdot\left(a+1\right)\left(a^3-a+2\right)\)
c) Ta có: \(x^3-4x^2+12x-27\)
\(=\left(x^3-27\right)-\left(4x^2-12x\right)\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
Bài 2: Phân tích đa thức thành nhân tử:
1) 6x3y - 12x2y2 + 6xy3 6) x – x -2
2) (x2 +4)2 -16 7) x4 - 5x2 + 4
3) 5x2 - 5xy - 10x + 10y 8) x2 – x3 - 2x2 - x
4) a3 - 3a + 3b – b3 9) (a3 – 27) – (3 – a)(6a + 9)
5) x2 - 2x – y2 +1 10) x2(y – z) + y2(z – x) + z2(x – y)
\(1,=6xy\left(x^2-2xy+y^2\right)=6xy\left(x-y\right)^2\\ 2,=\left(x^2+4-4\right)\left(x^2+4+4\right)=x^2\left(x^2+8\right)\\ 3,=5x\left(x-y\right)-10\left(x-y\right)=5\left(x-2\right)\left(x-y\right)\\ 4,=\left(a-b\right)\left(a^2+ab+b^2\right)-3\left(a-b\right)=\left(a-b\right)\left(a^2+ab+b^2-3\right)\\ 5,=\left(x-1\right)^2-y^2=\left(x+y-1\right)\left(x-y-1\right)\\ 6,Sửa:x^2-x-2=x^2+x-2x-2=\left(x+1\right)\left(x-2\right)\\ 7,=x^4-4x^2-x^2+4=\left(x^2-4\right)\left(x^2-1\right)\\ =\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\\ 8,=-x^3-x^2-x=-x\left(x^2+x+1\right)\\ 9,=\left(a-3\right)\left(a^2+3a+9\right)+\left(a-3\right)\left(6a+9\right)\\ =\left(a-3\right)\left(a^2+9a+18\right)\\ =\left(a-3\right)\left(a^2+3a+6a+18\right)\\ =\left(a-3\right)\left(a+3\right)\left(a+6\right)\)
\(10,=x^2y-x^2z+y^2z-xy^2+z^2\left(x-y\right)\\ =xy\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)\\ =\left(x-y\right)\left(xy-xz-yz+z^2\right)\\ =\left(x-y\right)\left(x-z\right)\left(y-z\right)\)
phân tích đa thức thành nhân tử
a/ 5x2 - 10x + 5 – 5y2 b/ x2 + x – 30
\(5\left(x-1\right)^2-5y^2=5\left(x-1-y\right)\left(x-1+y\right)\)
\(x^2+6x-5x-30=\left(x-5\right)\left(x+6\right)\)
phân tích đa thức thành nhân tử
a)x4 - x3y + x - y
b)a2 - 2a + 1 - 9b2
a: =x^3(x-y)+(x-y)
=(x-y)(x^3+1)
=(x-y)(x+1)(x^2-x+1)
b: =(a-1)^2-9b^2
=(a-1-3b)(a-1+3b)
bài 1 : phân tích đa thức thành nhân tử
a/ 2x2 (x – 1) + 4x (1 – x) b/ x4 – 27x c/ x2 – 4x + 3 d / x4 + x2 + 1
b: \(=x\left(x-3\right)\left(x^2+3x+9\right)\)
a/ 2x^2 (x – 1) + 4x (1 – x)
= 2x^2(x – 1) – 4x (x – 1)
= (x – 1)( 2x^2 – 4x)
=2x(x – 1)(x – 2)