Câu bcd giúp em ạ
Cho (O), đường kính AB = 2R. Gọi I là trung điểm AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì?
b) CHứng minh tma giác BCD đều.
c) Tính chu vi và diện tích tam giác BCD theo R.Giúp em câu b,c với ạ.
Lời giải:
a) Vì $OC=OD$ nên tam giác 4COD$ là tam giác cân tại $O$. Do đó đường cao $OI$ đồng thời là đường trung trực của $CD$ hay $AO$ là trung trực $CD$.
Vậy tứ giác $ACOD$ có 2 đường chéo $AO, CD$ thỏa mãn $AO$ là trung trực của $CD$ và $CD$ là trung trực của $AI$ nên $ACOD$ là hình thoi.
b) $B\in AO$ và $AO$ là trung trực $CD$ nên $BC=BD(1)$
Áp dụng định lý Pitago:
$CD=2CI=2\sqrt{CO^2-IO^2}=2\sqrt{R^2-(\frac{R}{2})^2}=\sqrt{3}R$
$CB=\sqrr{CI^2+IB^2}=\sqrt{(\frac{\sqrt{3}}{2})^2+(\frac{3}{2})^2}=\sqrt{3}R$
$\Rightarrow CD=CB(2)$
Từ $(1);(2)\Rightarrow CD=CB=BD$ nên tam giác $BCD$ đều (đpcm)
c)
Chu vi: $P=3CD=3\sqrt{3}R$ (đơn vị độ dài)
Diện tích: $S=\frac{BI.CD}{2}=\frac{\frac{3}{2}R.\sqrt{3}R}{2}=\frac{3\sqrt{3}R^2}{4}$ (đơn vị diện tích)
cho hình chữ nhật ABCD có AB=8cm, BC=6cm. Gọi AH là đường cao của tam giác ADB.
a) Chứng minh tam giác AHB đồng dạng với tam giác BCD.
b) Vẽ tia phân giác của góc BCD cắt CD tại I, chứng minh IB.HB=ID.AH
GIÚP MÌNH CÂU B THÔI Ạ
(Tự vẽ hình) Sửa đề: Phân giác của góc BCD cắt BD tại I
b) Do \(CI\) là phân giác nên ta có: \(\dfrac{IB}{ID}=\dfrac{BC}{CD}\)
Mặt khác: \(\Delta AHB\sim\Delta BCD\) (câu a)
\(\Rightarrow\dfrac{BC}{CD}=\dfrac{AH}{HB}\Rightarrow\dfrac{IB}{ID}=\dfrac{AH}{HB}\Rightarrow IB.HB=ID.AH\)
Mong mn giúp em chỉ sửa các đáp án của em, dạ có vài câu em không biết làm mong mn chỉ giúp em ạ Phần tự luận nhờ mn giả giúp em câu 4 ạ em không biết làm câu đấy ạ DẠ EM CẢM ƠN MN NHÌU Ạ!
II. Phần tự luận
Câu 1: Động năng của một vật phụu thuộc vào khối lượng và vận tốc
Ví dụ về vật vừa có động năng vừa có thế năng: một chiếc lá đang rơi từ trên cây xuống
Câu 2: Vì nếu cho đá vào trước thì đường và chanh sẽ chậm hòa tan vàotrong nước do nhiệt độ càn cao thì các hạt nguyên tử phân tử chuyển động càng nhanh nên cần hòa tan đường và chanh vào trước để được hòa tan vào trong nước hơn rồi mới nên cho đá vào
II. Phần tự luận:
Câu 3:
Công thực hiện được:
\(A=F.s=180.8=1440J\)
Công suất của người kéo:
\(\text{℘}=\dfrac{A}{t}=\dfrac{1440}{30}==48W\)
Câu 4:
Đổi: \(12km/h=43,2m/s\)
Công suất của ngựa:
\(\text{℘}=\dfrac{A}{t}=\dfrac{F.s}{t}=F.\dfrac{s}{t}=F.\upsilon=320.43,2=13824W\)
I. Trắc nghiệm
16.A
17.A
18.D
19.D
20.A
21.B
22.D
23.A
24.B
25.A
26.B
27.C
28.B
Cho tứ diện ABCD. Trên AB,AC lấy 2 điểm M,N sao cho MN không song song BC. Gọi O là một điểm nằm trong tam giác BCD. a) Tìm giao tuyến (OMN) và (BCD) b) Tìm giao điểm DB,DC, DA với (OMN) Vẽ hình giúp luôn ạ. Em cảm ơn
a: Trong mp(ABC), gọi E là giao điểm của MN và BC
\(O\in\left(OMN\right);O\in\left(BCD\right)\)
=>\(O\in\left(OMN\right)\cap\left(BCD\right)\)
\(E\in MN\subset\left(OMN\right);E\in BC\subset\left(BCD\right)\)
=>\(E\in\left(OMN\right)\cap\left(BCD\right)\)
Do đó: \(\left(OMN\right)\cap\left(BCD\right)=OE\)
b: Chọn mp(BCD) có chứa DB
\(\left(OMN\right)\cap\left(BCD\right)=OE\)
Gọi F là giao của OE với DB
=>F là giao của DB với mp(OMN)
Chọn mp(BCD) có chứa DC
\(\left(OMN\right)\cap\left(BCD\right)=OE\)
Gọi K là giao của OE với DC
=>K là giao của DC với mp(OMN)
MỌI NGƯỜI GIÚP EM VỚI Ạ (EM ĐANG CẦN NÓ GẤP AÁY Ạ AI LÀM ĐƯỢC CÂU NÀO THÌ GIÚP EM CÂU ĐÓ NHÉ)
EM CẢM ƠN Ạ
Câu 7:
a, \(Fe+H_2SO_4\rightarrow FeSO_4+H_2\)
\(CuO+H_2SO_4\rightarrow CuSO_4+H_2O\)
b, \(n_{H_2}=\dfrac{2,24}{22,4}=0,1\left(mol\right)\)
Theo PT: \(n_{Fe}=n_{H_2}=0,1\left(mol\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\%m_{Fe}=\dfrac{0,1.56}{10}.100\%=56\%\\\%m_{CuO}=44\%\end{matrix}\right.\)
c, \(n_{CuO}=\dfrac{10-0,1.56}{80}=0,055\left(mol\right)\)
Theo PT: \(n_{H_2SO_4}=n_{Fe}+n_{CuO}=0,155\left(mol\right)\)
\(\Rightarrow C\%_{H_2SO_4}=\dfrac{0,155.98}{100}.100\%=15,19\%\)
d, Theo PT: \(\left\{{}\begin{matrix}n_{FeSO_4}=n_{Fe}=0,1\left(mol\right)\\n_{CuSO_4}=n_{CuO}=0,055\left(mol\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m_{FeSO_4}=0,1.152=15,2\left(g\right)\\m_{CuSO_4}=0,055.160=8,8\left(g\right)\end{matrix}\right.\)
Câu 8:
a, \(CuCO_3+2HCl\rightarrow CuCl_2+CO_2+H_2O\)
b, \(n_{CO_2}=\dfrac{3,36}{22,4}=0,15\left(mol\right)\)
Theo PT: \(n_{CuCO_3}=n_{CO_2}=0,15\left(mol\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\%m_{CuCO_3}=\dfrac{0,15.124}{20}.100\%=93\%\\\%m_{CuCl_2}=7\%\end{matrix}\right.\)
c, \(n_{HCl}=2n_{CO_2}=0,3\left(mol\right)\)
\(\Rightarrow C_{M_{HCl}}=\dfrac{0,3}{0,2}=1,5\left(M\right)\)
Bài 6:
a, \(SO_2+Ca\left(OH\right)_2\rightarrow CaSO_3+H_2O\)
b, \(n_{SO_2}=\dfrac{1,12}{22,4}=0,05\left(mol\right)\)
Theo PT: \(n_{Ca\left(OH\right)_2}=n_{CaSO_3}=n_{SO_2}=0,05\left(mol\right)\)
\(\Rightarrow C\%_{Ca\left(OH\right)_2}=\dfrac{0,05.74}{100}.100\%=3,7\%\)
c, \(m_{CaSO_3}=0,05.120=6\left(g\right)\)
Cho ABCD , ABEF là hình bình hành không đồng phẳng . Gọi G1 và G2 là trọng tâm ∆BCD và ∆ AEF . Chứng minh G1,G2 // mặt phẳng CDF . Vẽ giúp em hình với ạ .
Mọi người check giúp em câu đã khoanh với ạ, sai thì chữa giúp em! Làm giúp câu chưa khoanh nữa ạ. Em cảm ơn!!
Para 1 - b
Para 2 - a
Para 3 - c
T - F - T - T - NG
1 B
2 A
3 D
4 D
5 A
Giúp em với ạ vẽ giúp em câu A ạ
b: Tọa độ là:
\(\left\{{}\begin{matrix}\dfrac{2}{3}x=-\dfrac{1}{3}x+2\\y=\dfrac{2}{3}x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{4}{3}\end{matrix}\right.\)
Mn giúp em với ạ em cần gấp mai đi học ạ em cảm ơn giúp em câu 1 ạ
\(=>Qthu1=0,2.340000=68000J\)
\(=>Qthu2=2100.0,2.20=8400J\)
\(=>Qtoa=2.4200.25=210000J\)
\(=>Qthu1+Qthu2< Qtoa\)=>đá nóng chảy hoàn toàn
\(=>0,2.2100.20+0,2.340000+0,2.4200.tcb=2.4200\left(25-tcb\right)\)
\(=>tcb=14,5^oC\)