Lời giải:
a) Vì $OC=OD$ nên tam giác 4COD$ là tam giác cân tại $O$. Do đó đường cao $OI$ đồng thời là đường trung trực của $CD$ hay $AO$ là trung trực $CD$.
Vậy tứ giác $ACOD$ có 2 đường chéo $AO, CD$ thỏa mãn $AO$ là trung trực của $CD$ và $CD$ là trung trực của $AI$ nên $ACOD$ là hình thoi.
b) $B\in AO$ và $AO$ là trung trực $CD$ nên $BC=BD(1)$
Áp dụng định lý Pitago:
$CD=2CI=2\sqrt{CO^2-IO^2}=2\sqrt{R^2-(\frac{R}{2})^2}=\sqrt{3}R$
$CB=\sqrr{CI^2+IB^2}=\sqrt{(\frac{\sqrt{3}}{2})^2+(\frac{3}{2})^2}=\sqrt{3}R$
$\Rightarrow CD=CB(2)$
Từ $(1);(2)\Rightarrow CD=CB=BD$ nên tam giác $BCD$ đều (đpcm)
c)
Chu vi: $P=3CD=3\sqrt{3}R$ (đơn vị độ dài)
Diện tích: $S=\frac{BI.CD}{2}=\frac{\frac{3}{2}R.\sqrt{3}R}{2}=\frac{3\sqrt{3}R^2}{4}$ (đơn vị diện tích)