Cho tam giác ABC vuông tại A, có AC= 6 cm, góc ACB bằng 30o. Vẽ (O) đường kính AC cắt BC tại D, dây DE vuông góc với AC tại H
a) Tính BC.
b) Chứng minh CDE là tam giác đều.
c) Qua B vẽ đường thẳng tiếp xúc với (O) tại M. Chứng minh BDM và BMC đồng dạng.
d) Gọi K là hình chiếu vuông góc của H lên EC và I là trung điểm HK. Chứng minh: DK vuông góc với CI.
a: \(BC=AC:\sin B=6:\sin60^0=4\sqrt{3}\left(cm\right)\)