Cho đường tròn tâm O đường kính BC. Từ điểm H trên đoạn OB (H khác O và B) vẽ dây cung AD vuông góc với OB.
a) Chứng minh tam giác ABC vuông và AD^2 = 4HB.HC
b) Các tiếp tuyến của (O) tại A và D cắt nhau tại M. Chứng minh 3 điểm M, B, O thẳng hàng và 4 điểm M, A, O, D cùng thuộc một đường tròn
c) Chứng minh B là tâm đường tròn nội tiếp tam giác MAD và BM.CH = CM.BH
d) Gọi I là chân đường vuông góc hạ từ A xuống đường kính DE, ME cắt tại AI tại K. Chứng minh KA = KI
a: Xét (O) có
ΔABC nội tiếp
BC là đường kính
DO đó: ΔABC vuông tại A