Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ỵyjfdfj
Xem chi tiết
TV Cuber
14 tháng 4 2022 lúc 12:35

a)\(P\left(x\right)=x^4+3\)

b)\(Q\left(x\right)=-x^3-2x^2-14x-1\)

Chiem Nguyênthi
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 6 2023 lúc 8:11

1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)

=-27x^3-18x^2+4x+10

2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27

=7x^3+37x^2+46x+33

5:

\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)

\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)

=7x^3-48x^2+8x-35

Sao hỏa Cnn mèo
Xem chi tiết
Toru
24 tháng 10 2023 lúc 15:29

Bài 1.

a)

\((x-2)(2x-1)-(2x-3)(x-1)-2\\=2x^2-x-4x+2-(2x^2-2x-3x+3)-2\\=2x^2-5x+2-(2x^2-5x+3)-2\\=2x^2-5x+2-2x^2+5x-3-2\\=(2x^2-2x^2)+(-5x+5x)+(2-3-2)\\=-3\)

b)

\(x(x+3y+1)-2y(x-1)-(y+x+1)x\\=x^2+3xy+x-2xy+2y-xy-x^2-x\\=(x^2-x^2)+(3xy-2xy-xy)+(x-x)+2y\\=2y\)

Bài 2.

a)

\((14x^3+12x^2-14x):2x=(x+2)(3x-4)\\\Leftrightarrow 14x^3:2x+12x^2:2x-14x:2x=3x^2-4x+6x-8\\ \Leftrightarrow 7x^2+6x-7=3x^2+2x-8\\\Leftrightarrow (7x^2-3x^2)+(6x-2x)+(-7+8)=0\\\Leftrightarrow 4x^2+4x+1=0\\\Leftrightarrow (2x)^2+2\cdot 2x\cdot 1+1^2=0\\\Leftrightarrow (2x+1)^2=0\\\Leftrightarrow 2x+1=0\\\Leftrightarrow 2x=-1\\\Leftrightarrow x=\frac{-1}2\)

b)

\((4x-5)(6x+1)-(8x+3)(3x-4)=15\\\Leftrightarrow 24x^2+4x-30x-5-(24x^2-32x+9x-12)=15\\\Leftrightarrow 24x^2-26x-5-(24x^2-23x-12)=15\\\Leftrightarrow 24x^2-26x-5-24x^2+23x+12=15\\\Leftrightarrow -3x+7=15\\\Leftrightarrow -3x=8\\\Leftrightarrow x=\frac{-8}3\\Toru\)

Nhung Dương
Xem chi tiết
꧁༺β£ɑℭƙ £❍ζʊꜱ༻꧂
24 tháng 9 2020 lúc 21:16

a. \(3x^2-2x\left(5+1.5x\right)+10\)

\(=3x^2-10x-3x^2+10\)

\(=-10x+10\)

b. \(\left(x^2-2x+3\right)\left(x-4\right)\)

\(=x^3-2x^2+3x-4x^2+8x-12\)

\(=x^3-6x^2+11x-12\)

c. \(\left(5x+2\right)\left(2x^2-3x-1\right)\)

\(=10x^3-15x^2-5x+4x^2-6x-2\)

\(=10x^3-11x^2-11x-2\)

d. \(\left(25x^2+10xy+4y^2\right)\left(5x+2y\right)\)

\(=125x^3+50x^2y+20xy^2+50x^2y+10xy^2+6y^3\)

\(=125x^3+100x^2y+30xy^2+6y^3\)

e. \(\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)\)

\(=20x^5-4x^4+2x-12x^2-5x^4+x^3-2x^2+3x+10x^3-2x^2+4x-1\)

\(=20x^5-9x^4+9x-16x^2+11x^3+1\)

Khách vãng lai đã xóa
Đoàn Minh Tâm
Xem chi tiết
kira uchiha -.-
Xem chi tiết
Yeutoanhoc
20 tháng 6 2021 lúc 11:01

$ a/ 12x(x – 5) – 3x(4x - 10) = 120$

`<=>12x^2-60x-12x^2+30x=120`

`<=>-30x=120`

`<=>x=-4`

Vậy `x=-4`

$b/ 9x(x + 4) – 5x(3x + 2) = 112 - 2x(3x + 1)$

`<=>9x^2+36x-15x^2-10x=112-6x^2-2x`

`<=>-6x^2+26x=112-6x^2-2x`

`<=>28x=112`

`<=>x=4`

Vậy `x=4`

$c/ 3x(1 – x) - 5x(3x + 7) = 154 + 9x(5 – 2x)$

`<=>3x-3x^2-15x^2-35x=154+45x-18x^2`

`<=>-32x-18x^2=154+45x-18x^2`

`<=>77x=-154`

`<=>x=-2`

Vậy `x=-2`

Minh Bình
Xem chi tiết

a: \(x^3+8x=5x^2+4\)

=>\(x^3-5x^2+8x-4=0\)

=>\(x^3-x^2-4x^2+4x+4x-4=0\)

=>\(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(x^2-4x+4\right)=0\)

=>\(\left(x-1\right)\left(x-2\right)^2=0\)

=>\(\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

2: \(x^3+3x^2=x+6\)

=>\(x^3+3x^2-x-6=0\)

=>\(x^3+2x^2+x^2+2x-3x-6=0\)

=>\(x^2\cdot\left(x+2\right)+x\left(x+2\right)-3\left(x+2\right)=0\)

=>\(\left(x+2\right)\left(x^2+x-3\right)=0\)

=>\(\left[{}\begin{matrix}x+2=0\\x^2+x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1+\sqrt{13}}{2}\\x=\dfrac{-1-\sqrt{13}}{2}\end{matrix}\right.\)

3: ĐKXĐ: x>=0

\(2x+3\sqrt{x}=1\)

=>\(2x+3\sqrt{x}-1=0\)

=>\(x+\dfrac{3}{2}\sqrt{x}-\dfrac{1}{2}=0\)

=>\(\left(\sqrt{x}\right)^2+2\cdot\sqrt{x}\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{17}{16}=0\)

=>\(\left(\sqrt{x}+\dfrac{3}{4}\right)^2=\dfrac{17}{16}\)

=>\(\left[{}\begin{matrix}\sqrt{x}+\dfrac{3}{4}=-\dfrac{\sqrt{17}}{4}\\\sqrt{x}+\dfrac{3}{4}=\dfrac{\sqrt{17}}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{\sqrt{17}-3}{4}\left(nhận\right)\\\sqrt{x}=\dfrac{-\sqrt{17}-3}{4}\left(loại\right)\end{matrix}\right.\)

=>\(x=\dfrac{13-3\sqrt{17}}{8}\left(nhận\right)\)

4: \(x^4+4x^2+1=3x^3+3x\)

=>\(x^4-3x^3+4x^2-3x+1=0\)

=>\(x^4-x^3-2x^3+2x^2+2x^2-2x-x+1=0\)

=>\(x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(x^3-2x^2+2x-1\right)=0\)

=>\(\left(x-1\right)\left(x^3-x^2-x^2+x+x-1\right)=0\)

=>\(\left(x-1\right)^2\cdot\left(x^2-x+1\right)=0\)

=>(x-1)^2=0

=>x-1=0

=>x=1

Nguyễn Việt Lâm
16 tháng 1 lúc 20:28

a.

\(x^3+8x=5x^2+4\)

\(\Leftrightarrow x^3-5x^2+8x-4=0\)

\(\Leftrightarrow\left(x^3-4x^2+4x\right)-\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow x\left(x-2\right)^2-\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

b.

\(x^3+3x^2-x-6=0\)

\(\Leftrightarrow\left(x^3+x^2-3x\right)+\left(2x^2+2x-6\right)=0\)

\(\Leftrightarrow x\left(x^2+x-3\right)+2\left(x^2+x-3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1\pm\sqrt{13}}{2}\end{matrix}\right.\)

Nguyễn Việt Lâm
16 tháng 1 lúc 20:33

c.

\(2x+3\sqrt{x}+1=0\)

ĐKXĐ: \(x\ge0\)

Do \(x\ge0\Rightarrow\left\{{}\begin{matrix}2x\ge0\\3\sqrt{x}\ge0\end{matrix}\right.\)

\(\Rightarrow2x+3\sqrt{x}+1>0\)

Pt đã cho vô nghiệm

d.

\(x^4+4x^2+1=3x^3+3x\)

\(\Leftrightarrow x^4-3x^3+4x^2-3x+1=0\)

- Với \(x=0\) ko phải nghiệm

- Với \(x\ne0\) chia cả 2 vế của pt cho \(x^2\)

\(\Rightarrow x^2-3x+4-\dfrac{3}{x}+\dfrac{1}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}+2\right)-3\left(x+\dfrac{1}{x}\right)+2=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2-3\left(x+\dfrac{1}{x}\right)+2=0\)

Đặt \(x+\dfrac{1}{x}=t\)

\(\Rightarrow t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=2\\x+\dfrac{1}{x}=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x+1=0\left(vn\right)\\x^2-2x+1=0\end{matrix}\right.\)

\(\Rightarrow x=1\)

VRKT_Hạ in Home
Xem chi tiết
Trà My
Xem chi tiết
Bình Lê
1 tháng 7 2017 lúc 17:31

1, \(3x^2-2x\left(5+1,5x\right)+10\)

= \(3x^2-10x-3x^2+10\)

= \(10-10x\)

= \(10\left(1-x\right)\)

Trần Quốc Lộc
1 tháng 7 2017 lúc 17:46

\(\text{a)}3x^2-2x\left(5+1.5x\right)+10\\ =3x^2-10x+3x^2+10\\ =\left(3x^2+3x^2\right)-10x+10\\ =6x^2-10x+10\)

\(\text{b)}5x\left(3x^2-12x+6\right)+4x^3\\ =15x^3-60x^2+30x+4x^3\\ =\left(15x^3+4x^3\right)-60x^2+30x\\ =19x^3-60x^2+30x\)

\(\)

\(\)