(x - 3)(2x - 6)(4x - 16) = 0
a) x^2+9x=0
b)x^3+4x^2+4x=0
c)(x-5)^2-16=0
d)3(x+2)-x^2-2x=0
e)(x+2)^3-x^2(x+6)=4
g)x^2+5x+6=0
\(a,x\left(x+9\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\\ b,\Rightarrow x\left(x^2+4x+4\right)=0\\ \Rightarrow x\left(x+2\right)^2=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ c,\Rightarrow\left(x-5-4\right)\left(x-5+4\right)=0\\ \Rightarrow\left(x-9\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\\ d,\Rightarrow3\left(x+2\right)-x\left(x+2\right)=0\\ \Rightarrow\left(x+2\right)\left(3-x\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\\ e,\Rightarrow x^3+6x^2+12x+8-x^3-6x^2=4\\ \Rightarrow12x=-4\Rightarrow x=-\dfrac{1}{3}\\ g,\Rightarrow\left(x+2\right)\left(x+3\right)=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)
Tìm x
2x-7+(x-14)=0
x^2-6x=0
(x-3)(16-4x)=0
(x-3)-(16-4x)=0
(x-3)+(16-4x)=0
Mấy câu này khá giống nhau nhé anh (câu 1 giống câu 4 và 5, cấu 2 giống câu 3) =)))
Câu 1: 2x - 7 + (x - 14) = 0
<=> 3x -21 = 0
<=> 3x = 21 => x = 7
Câu 2:
x2 - 6x = 0 <=> x.(x - 6) = 0 => \(\orbr{\begin{cases}x=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}\)
Chúc anh học tốt !!!
Câu 1, 2 có người làm rồi nên mik làm tiếp cho mấy câu tiếp. Cứ áp dụng A.B = 0 => A = 0 hoặc B = 0
3; ( x - 3 )( 16 - 4x ) = 0
=> x - 3 = 0 hoặc 16 - 4x = 0
=> x = 3 hoặc x = 4
Vậy x = 3 hoặc x = 4.
4; ( x - 3 ) - ( 16 - 4x ) = 0
=> x - 3 - 16 + 4x = 0
=> ( x + 4x ) - ( 3 + 16 ) = 0
=> 5x - 19 = 0
=> x = 19/5
Vậy x = 19/5
5; ( x + 3 ) + ( 16 - 4x ) = 0
=> x + 3 + 16 - 4x = 0
=> ( x - 4x ) + ( 16 + 3 ) = 0
=> 3x + 19 = 0
=> x = 19/3
Vậy x = 19/3
Tìm x
a,35-2(x+7)=4x-13
b,25-x2=16
c,(3-x).(16-x2)=16
d,(x-1).(121+x2)=0
e,3.(x-7)=-x.(x+7)
f,(|x|-1).(9-x2)=0
g,x2-3x=0
h,x.(x-6)-3x+18=0
i,(x-5)2-(2x-6)=0
k,4x2-2x-2x+1=0
giải pt
x^2+4x-3|x+2|+4=0
4x^2+1/x^2+|2x-1/x|-6=0
2x/(3x^2-5x+2)+13x/(3x2+x+2)=6
2(x+1)/3x^2+x+13(x+1)/3x^2+7x+16=6
1: =>(x+2)^2-3|x+2|=0
=>|x+2|(|x+2|-3)=0
=>x+2=0 hoặc x+2=3 hoặc x+2=-3
=>x=-2; x=1; x=-5
2 . ( x³ -1)-2x²(x+2x⁴) +(4x⁵+4)x=6. 3. (X²-4x+16)(x+4)-x(x+1)(x+2)+3x²= 0 4 . ( 8x +2 ) (1-3x) + ( 6x-1)(4x-10) =-50 Đề bài là tìm x nha mn Nhanh giúp mik vs
2:
=>x^3-1-2x^3-4x^6+4x^6+4x=6
=>-x^3+4x-7=0
=>x=-2,59
4: =>8x-24x^2+2-6x+24x^2-60x-4x+10=-50
=>-62x+12=-50
=>x=1
Giai phường trình sau:
a, \(3x^2+2x-1=0\) e, \(4x^2-12x+5=0\) i,\(2x^2+5x-3=0\)
b,\(x^2-5x+6=0\) f, \(2x^2+5x+3=0\) j,\(x^2+6x-16=0\)
c,\(x^2-3x+2=0\) g,\(x^2+x-2=0\)
d,\(2x^2-6x+1=0\) h, \(x^2-4x+3=0\)
a) Ta có: \(3x^2+2x-1=0\)
\(\Leftrightarrow3x^2+3x-x-1=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-1;\dfrac{1}{3}\right\}\)
b) Ta có: \(x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy: S={2;3}
c) Ta có: \(x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy: S={1;2}
d) Ta có: \(2x^2-6x+1=0\)
\(\Leftrightarrow2\left(x^2-3x+\dfrac{1}{3}\right)=0\)
mà \(2\ne0\)
nên \(x^2-3x+\dfrac{1}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{23}{12}=0\)
\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=\dfrac{23}{12}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{\sqrt{69}}{6}\\x-\dfrac{3}{2}=\dfrac{-\sqrt{69}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9+\sqrt{69}}{6}\\x=\dfrac{9-\sqrt{69}}{6}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{9+\sqrt{69}}{6};\dfrac{9-\sqrt{69}}{6}\right\}\)
e) Ta có: \(4x^2-12x+5=0\)
\(\Leftrightarrow4x^2-10x-2x+5=0\)
\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{5}{2};\dfrac{1}{2}\right\}\)
giải phương trình
1)\(\sqrt{9\left(x-1\right)}=21\)
2)\(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\)
3)\(\sqrt{2x}-\sqrt{50}=0\)
4)\(\sqrt{4x^2+4x+1}=6\)
5)\(\sqrt{\left(x-3\right)^2}=3-x\)
1) \(\sqrt[]{9\left(x-1\right)}=21\)
\(\Leftrightarrow9\left(x-1\right)=21^2\)
\(\Leftrightarrow9\left(x-1\right)=441\)
\(\Leftrightarrow x-1=49\Leftrightarrow x=50\)
2) \(\sqrt[]{1-x}+\sqrt[]{4-4x}-\dfrac{1}{3}\sqrt[]{16-16x}+5=0\)
\(\Leftrightarrow\sqrt[]{1-x}+\sqrt[]{4\left(1-x\right)}-\dfrac{1}{3}\sqrt[]{16\left(1-x\right)}+5=0\)
\(\)\(\Leftrightarrow\sqrt[]{1-x}+2\sqrt[]{1-x}-\dfrac{4}{3}\sqrt[]{1-x}+5=0\)
\(\Leftrightarrow\sqrt[]{1-x}\left(1+3-\dfrac{4}{3}\right)+5=0\)
\(\Leftrightarrow\sqrt[]{1-x}.\dfrac{8}{3}=-5\)
\(\Leftrightarrow\sqrt[]{1-x}=-\dfrac{15}{8}\)
mà \(\sqrt[]{1-x}\ge0\)
\(\Leftrightarrow pt.vô.nghiệm\)
3) \(\sqrt[]{2x}-\sqrt[]{50}=0\)
\(\Leftrightarrow\sqrt[]{2x}=\sqrt[]{50}\)
\(\Leftrightarrow2x=50\Leftrightarrow x=25\)
1) \(\sqrt{9\left(x-1\right)}=21\) (ĐK: \(x\ge1\))
\(\Leftrightarrow3\sqrt{x-1}=21\)
\(\Leftrightarrow\sqrt{x-1}=7\)
\(\Leftrightarrow x-1=49\)
\(\Leftrightarrow x=49+1\)
\(\Leftrightarrow x=50\left(tm\right)\)
2) \(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\) (ĐK: \(x\le1\))
\(\Leftrightarrow\sqrt{1-x}+2\sqrt{1-x}-\dfrac{4}{3}\sqrt{1-x}+5=0\)
\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}+5=0\)
\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}=-5\) (vô lý)
Phương trình vô nghiệm
3) \(\sqrt{2x}-\sqrt{50}=0\) (ĐK: \(x\ge0\))
\(\Leftrightarrow\sqrt{2x}=\sqrt{50}\)
\(\Leftrightarrow2x=50\)
\(\Leftrightarrow x=\dfrac{50}{2}\)
\(\Leftrightarrow x=25\left(tm\right)\)
4) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\left(ĐK:x\ge-\dfrac{1}{2}\right)\\2x+1=-6\left(ĐK:x< -\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\left(tm\right)\\x=-\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)
5) \(\sqrt{\left(x-3\right)^2}=3-x\)
\(\Leftrightarrow\left|x-3\right|=3-x\)
\(\Leftrightarrow x-3=3-x\)
\(\Leftrightarrow x+x=3+3\)
\(\Leftrightarrow x=\dfrac{6}{2}\)
\(\Leftrightarrow x=3\)
1) => 9(x-1)=\(21^2\)
=> 9x-9=441
=> 9x=450
=> x=50
2)=>\(\sqrt{1-x}\) + \(\sqrt{4\left(1-x\right)}\)-\(\dfrac{1}{3}\sqrt{16\left(1-x\right)}\)+5=0
=>\(\sqrt{1-x}\)\(\left(1+2-\dfrac{1}{3}.4\right)\)+5=0
=>\(\dfrac{5}{3}\sqrt{1-x}\) +5=0
=>\(\sqrt{1-x}\)=-3
Phuong trinh vo nghiem
giải các phương trình tích sau:
1, 3x(x-2) = 7(x-2)
2, 2x^2 = x
3, x^2(x^2+1) = 0
4, x^3+9x = 6x^2
5, (x+3)(x-3) = 16
6, (x-6)(x+4) = 2(x+1)
7, (x-1)^2 = 4
8, (2x+1)^2 = (x-1)^2
9,(x^2-1)(2x-1) = (x^2-1)(x+2)
10, x^2-9x+20 = 0
11, x^2+2x-15 = 0
12, x^3-4x^2+5x = 0
13,x^3+4x^2+x-6 = 0
14, x^3-3x^2+4 = 0
15, x^4+2x^3+2x^2-2x-3 = 0
16, (x^2+x)(x^2+x+1) = 6
mk cần gấp mai mk đi học
1)3x(x-2)=7(x-2)
<=>3x(x-2)-7(x-2)=0
<=>(x-2)(3x-7)=0
x-2=0=>x=2
3x-7=0=>x=7/3
cn lại lm tg tự
10)\(x^2-9x+20=0\)
\(\Leftrightarrow x^2-4x-5x+20=0\)
\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=4\\x=5\end{cases}}\)
16) \(\left(x^2+x\right)\left(x^2+x+1\right)=6\)
\(\Leftrightarrow x^4+x^3+x^2+x^3+x^2+x=6\)
\(\Leftrightarrow x^4+2x^3+2x^2+x-6=0\)
\(\Leftrightarrow x^4+2x^3+2x^2+4x-3x-6=0\)
\(\Leftrightarrow x^3\left(x+2\right)+2x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3+2x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3+\frac{1}{4}x-x+\frac{11}{4}x-\frac{11}{4}-\frac{1}{4}+x^2-x^2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[\left(x^3-x^2\right)+\left(x^2-x\right)+\left(\frac{1}{4}x-\frac{1}{4}\right)+\left(\frac{11}{4}x-\frac{11}{4}\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-1\right)+x\left(x-1\right)+\frac{1}{4}\left(x-1\right)+\frac{11}{4}\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x^2+x+\frac{1}{4}+\frac{11}{4}\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\right]=0\)
\(\Leftrightarrow\hept{\begin{cases}x+2=0\\x-1=0\\\left(x+\frac{1}{2}\right)^2+\frac{11}{4}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-2\\x=1\\\left(x+\frac{1}{2}\right)^2+\frac{11}{4}=0->ktm\end{cases}}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\)=>ko thỏa mãn(đây là giải thích cho phần trên)
6)\(\left(x-6\right)\left(x+4\right)=2\left(x+1\right)\)
\(\Leftrightarrow x^2+4x-6x-24-2x-2=0\)
\(\Leftrightarrow x^2-4x-26=0\)
đến đây nếu phân tích tam thức bậc hai này thì tìm đc x là số thập phân vô hạn ko tuần hoàn nên mk nghĩ là đề bài câu này sai
(Bài 14; Tìm x biết
1) x ^ 2 - 9 = 0
4) 4x ^ 2 - 4 = 0
7) (3x + I) ^ 2 - 16 = 0
10) (x + 3) ^ 2 - x ^ 2 = 45
2) 25 - x ^ 2 = 0
5) 4x ^ 2 - 36 = 0
8) (2x - 3) ^ 2 - 49 = 0
11) (5x - 4) ^ 2 - 49x ^ 2 = 0
3) - x ^ 2 + 36 = 0
6) 4x ^ 2 - 36 = 0
9) (2x - 5) ^ 2 - x ^ 2 = 0
12) 16 * (x - 1) ^ 2 - 25 = 0
1, \(x^2\) - 9 = 0
(\(x\) - 3)(\(x\) + 3) = 0
\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
vậy \(x\) \(\in\) {-3; 3}
7, (3\(x\) + 1)2 - 16 = 0
(3\(x\) + 1 - 4)(3\(x\) + 1 + 4) = 0
(3\(x\) - 3).(3\(x\) + 5) = 0
\(\left[{}\begin{matrix}3x-3=0\\3x+5=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=3\\3x=-5\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=\dfrac{-5}{3}\end{matrix}\right.\)
Vậy \(x\) \(\in\) {1; - \(\dfrac{5}{3}\)}
10, (\(x\) + 3)2 - \(x^2\) = 45
[(\(x\) + 3) - \(x\)].[(\(x\) + 3) + \(x\)] = 45
3.(2\(x\) + 3) = 45
2\(x\) + 3 = 15
2\(x\) = 12
\(x\) = 6