tìm nghiệm của đa thức sau
g(x)=(6-3x)(-2x+5)
Tìm giá trị nhỏ nhất của các biểu thức sau
E=(2x – 5)10 – 12 F=(x+5)8+|x+5|+ 22
Tìm giá trị lớn nhất của các biểu thức sau
G=17-|3x-2| K= 17-|3x-2|- (2-3x)2020
\(E=\left(2x-5\right)^{10}-12\ge-12\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)
Vậy \(E_{min}=-12\Leftrightarrow x=\dfrac{5}{2}\)
\(F=\left(x+5\right)^8+\left|x+5\right|+22\ge22\)
Dấu "=" xảy ra \(\Leftrightarrow x=-5\)
Vậy \(F_{min}=22\Leftrightarrow x=-5\)
\(G=17-\left|3x-2\right|\)
Dấu "=" xảy ra \(x=\dfrac{2}{3}\)
Vậy \(G_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)
\(K=17-\left|3x-2\right|-\left(2-3x\right)^{2020}\le17\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{2}{3}\)
Vậy \(K_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)
Tìm nghiệm của đa thức: g(x)= (6 - 3x) (-2x +5)
Xét g(x)=0
Suy ra (6-3x)(-2x+5)=0
Suy ra:\(\orbr{\begin{cases}6-3x=0\\-2x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}3x=6\\-2x=-5\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{5}{2}\end{cases}}\)
Vậy, nghiệm của đa thức g(x) là 2 và 5/2
Cho đa thức P(x) = 3x^2 - 1 + 2x^6 - 3x^5 - x^2 + 5x + 3x^5 - 2x^6
Tìm nghiệm của đa thức H(x) , biết P(x) - H(x) = -1
H(x)=2x^2+5x
nghiệm của H(x) là :
H(x)=0 khi x=0
vì \(2.0^2+5.0=0\)
vậy nghiệm của H(x) là 0
đúng chưa bạn nếu đúng thì kết bạn với mình nhé
Tìm nghiệm của đa thức sau Bx=2x+1-(x-3)
Bx=5x-6-(x+2)
Bx=4×(x-1)+3x-5
a: Đặt B(x)=0
=>2x+1-x+3=0
=>x+4=0
hay x=-4
b: Đặt B(x)=0
=>5x-6-x-2=0
=>4x-8=0
hay x=2
c: Đặt B(x)=0
=>4(x-1)+3x-5=0
=>4x-4+3x-5=0
=>7x-9=0
hay x=9/7
Tìm nghiệm của đa thức: x2-2x-3x+6
a) x/2 = y/3; y/4=z/5 và x2 -y2=-16
b) tìm x biết : |2x+3|=x+2
c)tìm nghiệm của các đa thức sau: f(x)=-3x+6
Th1: 2x+3 ≥ 0
Khi đó: |2x+3| =x+2
(2x+3)= x+2
- 2x+3= x+2
-2x-x= 2-3
x= -1
Th2: 2x+3 < 0
Khi đó: |2x+3|=x+2
-(2x+3) = x +2
-2x-3 = x+2
-3x = 5
x=-5/3
Vậy x= -1
x= -5/3
Lớp 6 cugx học dạng v nè
`x/2=y/3 <=> x/8=y/12;
`y/4=z/5 <=> y/12=z/15.`
`<=> x/8=y/12=z/15=(x^2-y^2)/(64-144)=16/80=1/5`.
`@ x/8=1/5 <=> x= 8/5`.
`@ y/12=1/5 <=> y=12/5`.
`@ z/15=1/5 <=> y=15/5`.
Vậy...
Lời giải:
a. Đặt $\frac{x}{2}=\frac{y}{3}=a\Rightarrow x=2a; y=3a$
$x^2-y^2=(2a)^2-(3a)^2=-16$
$\Rightarrow -5a^2=-16\Rightarrow a=\pm \frac{4}{\sqrt{5}}$
Nếu $a=\frac{-4}{\sqrt{5}}$ thì:
$x=2a=\frac{-8}{\sqrt{5}}; y=3a=\frac{-12}{\sqrt{5}}; z=\frac{5}{4}y=-3\sqrt{5}$
Nếu $a=\frac{4}{\sqrt{5}}$ thì:
$x=2a=\frac{8}{\sqrt{5}}; y=3a=\frac{12}{\sqrt{5}}; z=\frac{5}{4}y=3\sqrt{5}$
b.
Nếu $x\geq \frac{-3}{2}$ thì:
$2x+3=x+2$
$\Leftrightarrow x=-1$
Nếu $x< \frac{-3}{2}$ thì:
$-2x-3=x+2$
$\Leftrightarrow -5=3x\Leftrightarrow x=\frac{-5}{3}$
Thử lại thấy 2 giá trị $-1, \frac{-5}{3}$ đều tm
c.
$f(x)=-3x+6=0$
$\Leftrightarrow -3x=-6\Leftrightarrow x=2$
Vậy $x=2$ là nghiệm của đa thức.
Cho các đa thức P(x) = 2x^2 - 3x -4. Q(x) = x^2 - 3x + 5 a) Tính giá trị của đa thức P(x) tại x =1 b) Tìm H(x) =P(x) - Q(x) c)Tìm nghiệm của đa thức H(x)
a, \(P\left(1\right)=2-3-4=-5\)
b, \(H\left(x\right)=P\left(x\right)-Q\left(x\right)=x^2-9\)
c, Ta có \(H\left(x\right)=\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=3;x=-3\)
Cho đa thức
M(x)=-2x^4-3x^2-7x-2
N(x)=3x^2+4x-5+2x^4
a) Tính P(x)=M(x)+N(x) rồi tìm nghiệm của đa thức P(x)
b) Tìm đa thức Q(x) sao cho Q(x)+M(x)=N(x)
a: \(M\left(x\right)=-2x^4-3x^2-7x-2\)
\(N\left(x\right)=2x^4+3x^2+4x-5\)
\(P\left(x\right)=M\left(x\right)+N\left(x\right)=-3x-7\)
Đặt P(x)=0
=>-3x-7=0
hay x=-7/3
b: Q(x)=N(x)-M(x)
\(=2x^4+3x^2+4x+5+2x^4+3x^2+7x+2\)
\(=4x^4+6x^2+11x+7\)
`a)P(x)=M(x)+N(x)`
`=-2x^4-3x^2-7x-2+3x^2+4x-5+2x^4`
`=-3x-7`
Cho `P(x)=0`
`=>-3x-7=0`
`=>-3x=7`
`=>x=-7/3`
________________________________________________________
`b)Q(x)+M(x)=N(x)`
`=>Q(x)=N(x)-M(x)`
`=>Q(x)=3x^2+4x-5+2x^4+2x^4+3x^2+7x+2`
`=>Q(x)=4x^4+6x^2+11x-3`
Tìm nghiệm của đa thức g(x)=x^2-3x-4
Tìm nghiệm của đa thức h(x)=2x^3-x^2-2x+1
\(x^2-3x-4=0\)
\(< =>x^2+x-4x-4=0\)
\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)
\(< =>\left(x-4\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
\(2x^3-x^2-2x+1=0\)
\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)
\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)