x/4=36/y2=z3/16=-12/-3
Tìm ,x,y,z,t biết
a,12/-6=x/5=-y/3=2/-17=-t/-9
b,-24/-6=x/3=4/y2=z3/-2
a: Sửa đề: \(\dfrac{12}{-6}=\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{2}{-z}=\dfrac{-t}{-9}\)
=>\(\dfrac{x}{5}=\dfrac{y}{-3}=\dfrac{-2}{z}=\dfrac{t}{9}=-2\)
=>\(x=-2\cdot5=-10;y=-2\cdot\left(-3\right)=6;z=\dfrac{-2}{-2}=1;t=9\cdot\left(-2\right)=-18\)
b: \(\dfrac{-24}{-6}=\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}\)
=>\(\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}=4\)
=>\(\left\{{}\begin{matrix}x=4\cdot3=12\\y^2=\dfrac{4}{4}=1\\z^3=-2\cdot4=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=12\\y\in\left\{1;-1\right\}\\z=-2\end{matrix}\right.\)
Tính giá trị biểu thức:
a) A = 5 x 2 +10xy + 5 y 2 - 105 z 2 tại x = 5, y = 7 và z = 12;
b) B = 16 x 2 - y 2 + 4x + y tại x = l,3 và y = 0,8.
c*) C = x 3 + y 3 + z 3 - 3xyz tại x = 2, y = 3 và z = 5;
d*) D = 99 x 100 + 99 x 99 + 99 x 98 + . . . + 99 x 2 + 99x + 99 với x = 100.
1. Cho tỉ lệ thức x/3 = y/4 và x.y = 12. Tìm x, y
2. Cho ba số x, y, z thỏa mãn x.y = -30; y.z = 42 và z-x = -12. Tính x, y, z
3.Tìm hai số x và y, biết: x/3 = y/-5 và x-y = 16
Cảm ơn các bạn
\(x-y=-30\Rightarrow\dfrac{x}{-30}=\dfrac{1}{y}\\ y.z=-42\\ \Rightarrow\dfrac{z}{-42}=\dfrac{1}{y}\\ \Rightarrow\dfrac{x}{-30}=\dfrac{z}{-42}\)
Áp dụng TCDTSBN ta có:
\(\dfrac{x}{-30}=\dfrac{z}{-42}=\dfrac{z-x}{-42-\left(-30\right)}=\dfrac{-12}{-12}=1\)
\(\dfrac{x}{-30}=1\Rightarrow x=-30\\ \dfrac{z}{-42}=1\Rightarrow z=-42\)
\(x.y=-30\Rightarrow-30.y=-30\Rightarrow y=1\)
Cho x 2 + y 2 = 26 và xy = 5, giá trị của x - y 2 là:
A. 4
B. 16
C. 21
D. 36
Chọn B
Ta có: x - y 2 = x 2 -2xy+ y 2 = ( x 2 + y 2 ) - 2xy = 26 - 2.5=16
Thực hiện phép tính
(5x5 y2 z + 1/2x4 y2 z3 - 2x y3 z2 ) ÷ 1/4 x y2 z
\(\left(5x^5y^2z+\dfrac{1}{2}x^4y^2z^3-2xy^3z^2\right):\dfrac{1}{4}xy^2z\\ =\left(5:\dfrac{1}{4}\right).\left(x^5:x\right).\left(y^2:y^2\right).\left(z:z\right)+\left(\dfrac{1}{2}:\dfrac{1}{4}\right).\left(x^4:x\right).\left(y^2:y^2\right).\left(z^3:z\right)-\left(2:\dfrac{1}{4}\right).\left(x:x\right).\left(y^3:y^2\right).\left(z^2:z\right)\\ =20x^4+2x^3z^2-8yz\)
Chứng minh các bất đẳng thức sau với x, y, z > 0
a) x2 + y2 ≥ (x + y)2/2
b) x3 + y3 ≥ (x + y)3/4
c) x4 + y4 ≥ (x + y)4/8
d) x2 + y2 + z2 ≥ xy + yz + zx
e) x2 + y2 + z2 ≥ (x + y + z)2/3
f) x3 + y3 + z3 ≥ 3xyz
a: Ta có: \(\left(x+y\right)^2\)
\(=x^2+2xy+y^2\)
\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)
Mình đang cần gấp! Giúp mình với ạ
Bài 3: Chứng minh rằng:
a) (x+y+z)2= x2+y2+z2+2xy+2xz+2yz
b) (x-y).(x2+y2+z2-xy-yz-xz)= x3+y3+z3-3xyz
c) (x+y+z)3= x3+y3+z3+3.(x+y).(y+z).(z+x)
Bài 3:
a, (\(x\)+y+z)2
=((\(x\)+y) +z)2
= (\(x\) + y)2 + 2(\(x\) + y)z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz
b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))
= \(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3
Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé
c,
(\(x\) + y + z)3
=(\(x\) + y)3 + 3(\(x\) + y)2z + 3(\(x\)+y)z2 + z3
= \(x^3\) + 3\(x^2\)y + 3\(xy^{2^{ }}\) + y3 + 3(\(x\)+y)z(\(x\) + y + z) + z3
= \(x^3\) + y3 + z3 + 3\(xy\)(\(x\) + y) + 3(\(x+y\))z(\(x+y+z\))
= \(x^3\) + y3 + z3 + 3(\(x\) + y)( \(xy\) + z\(x\) + yz + z2)
= \(x^3\) + y3 + z3 + 3(\(x\) + y){(\(xy+xz\)) + (yz + z2)}
= \(x^3\) + y3 + z3 + 3(\(x\) + y){ \(x\)( y +z) + z(y+z)}
= \(x^3\) + y3 + z3 + 3(\(x\) + y)(y+z)(\(x+z\)) (đpcm)
c) C = x(y2 +z2)+y(z2 +x2)+z(x2 +y2)+2xyz.
d) D = x3(y−z)+y3(z−x)+z3(x−y).
e) E = (x+y)(x2 −y2)+(y+z)(y2 −z2)+(z+x)(z2 −x2).
b) x2 +2x−24 = 0.
d) 3x(x+4)−x2 −4x = 0.
f) (x−1)(x−3)(x+5)(x+7)−297 = 0.
(2x−1)2 −(x+3)2 = 0.
c) x3 −x2 +x+3 = 0.
e) (x2 +x+1)(x2 +x)−2 = 0.
a) A = x2(y−2z)+y2(z−x)+2z2(x−y)+xyz.
b) B = x(y3 +z3)+y(z3 +x3)+z(x3 +y3)+xyz(x+y+z). c) C = x(y2 −z2)−y(z2 −x2)+z(x2 −y2).
Đề bài yêu cầu gì vậy em.
Tìm x biết:
a)58+7x=100
b)3x - 7=28
c)x - 56:4=16
d)101+(36-4x)=105
e) (x - 12 ) : 12 = 12
f) (3.x-24).73=2.74
i) (10+2x) .42011=42013
a) \(58+7x=100\)
\(=>7x=100-58\)
\(=>7x=42\)
\(=>x=42:7\)
\(=>x=6\)
b) \(3x-7=28\)
\(=>3x=28+7\)
\(=>3x=35\)
\(=>x=35:3\)
\(=>x=\dfrac{35}{3}\)
c) \(x-56:4=16\)
\(=>x-14=16\)
\(=>x=16+14\)
\(=>x=30\)
d) \(101+\left(36-4x\right)=105\)
\(=>36-4x=105-101\)
\(=>36-4x=4\)
\(=>4x=36-4\)
\(=>4x=32\)
\(=>x=32:4\)
\(=>x=8\)
e) \(\left(x-12\right):12=12\)
\(=>x-12=12.12\)
\(=>x-12=144\)
\(=>x=144-12\)
\(=>x=132\)
f) \(\left(3x-2^4\right).7^3=2.7^4\)
\(=>3x-2^4=2.7^4:7^3\)
\(=>3x-16=2.7=14\)
\(=>3x=14+16\)
\(=>3x=30\)
\(=>x=30:3\)
\(=>x=10\)
i) \(\left(10+2x\right).4^{2011}=4^{2013}\)
\(=>10+2x=4^{2013}:4^{2011}\)
\(=>10+2x=4^2=16\)
\(=>2x=16-10\)
\(=>2x=6\)
\(=>x=6:2\)
\(=>x=3\)
\(#WendyDang\)