2/2.4+2/4.6+....+2/2010.2012
Bài 15 tính tổng a) A= 1/1.2 +1/2.3 +1/3.4 +...+1/2011.2012 b) B= 1/2.4 +1/4.6 + 1/6.8+.,.......+1/2010.2012
A = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/2011 - 1/2012
A = 1 - 1/2012
A = 2011/2012
B = 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 +...+ 1/2010 - 1/2012
B = 1/2 - 1/2012
B = 1005/2012
a) \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2011\cdot2012}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\)
\(A=1-\dfrac{1}{2012}\)
\(A=\dfrac{2011}{2012}\)
b) \(B=\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{2010\cdot2012}\)
\(B=\dfrac{1}{2}\cdot\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{2010\cdot2012}\right)\)
\(B=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2010}-\dfrac{1}{2012}\right)\)
\(B=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{2012}\right)\)
\(B=\dfrac{1}{2}\cdot\dfrac{1005}{2012}\)
\(B=\dfrac{1005}{4024}\)
2/2.4+2/4.6+2/6.8+...+2/98.100
\(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{98.100}\\ =\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{98}-\dfrac{1}{100}\\ =\dfrac{1}{2}-\dfrac{1}{100}\\ =\dfrac{49}{100}\)
\(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+....+\dfrac{2}{98.100}\)\(=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+....+\dfrac{1}{98}-\dfrac{1}{100}\)
\(=\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}\)
tinh tổng :
a. S = 0.2 + 2.4 + 4.6 +.......+ 98.100
b. S= 0.2+ 2.4 + 4.6 + .........+ 2n. ( 2n +2 )
Chứng minh rằng: 1.3+2/2^2+2.4+2/3^2+3.5+2/4^2+...+2010.2012+2/2011^2+2015.2017+2/2016^2<2017
Mình cần gấp lắm, cố xong trong hôm nay nha
Đặt A = \(\frac{1.3+2}{2^2}+\frac{2.4+2}{3^2}+\frac{3.5+2}{4^2}+...+\frac{2010.2012+2}{2011^2}+\frac{2015.2017+2}{2016^2}\)
\(=\frac{\left(2-1\right)\left(2+1\right)+2}{2^2}+\frac{\left(3-1\right)\left(3+1\right)}{3^2}+...+\frac{\left(2016-1\right)\left(2016+1\right)+2}{2016^2}\)
\(=\frac{2^2-1+2}{2^2}+\frac{3^2-1+2}{3^2}+....+\frac{2016^2-1+2}{2016^2}\)
\(=\frac{2^2+1}{2^2}+\frac{3^2+1}{3^2}+...+\frac{2016^2+1}{2016^2}\)
\(=\left(1+1+...+1\right)+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}\right)\)(2015 hạng tử 1)
\(=2015+\left(\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{2016.2016}\right)\)
\(< 2015+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2015.2016}\right)\)
\(=2015+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}\right)=2015+\left(1-\frac{1}{2016}\right)\)
= 2015 + 1 + 1/2016
= 2016 + 1/2016 < 2017
=> A < 2017 (ĐPCM)
Tinh:
a/S=0.2+2.4+4.6+......+98.100
b/ A= 0.2+2.4+4.6+......+ 2n(2n+2)
2/2.4+2/4.6+....+2/50.52
\(\dfrac{2}{2.4}+\dfrac{2}{4.6}+................+\dfrac{2}{50.52}\)
\(=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+..............+\dfrac{1}{50}-\dfrac{1}{52}\)
\(=\dfrac{1}{2}-\dfrac{1}{52}=\dfrac{25}{52}\)
\(\dfrac{2}{2.4}+\dfrac{2}{4.6}+.....+\dfrac{2}{50.52}\)
\(=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+.....+\dfrac{1}{50}-\dfrac{1}{52}\)
\(=\dfrac{1}{2}-\dfrac{1}{52}=\dfrac{25}{52}\)
2/ 2.4 + 2/ 4.6 + 2/ 6.8 + 2/ 8.10 + ....... + 2/ 50.52
\(=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{50}-\dfrac{1}{52}=\dfrac{1}{2}-\dfrac{1}{52}=\dfrac{25}{52}\)
2/2.4 + 2/4.6 + 2/6.8 + ...+ 2/2004.2006
\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2004.2006}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2004}-\frac{1}{2006}\)
\(=\frac{1}{2}-\frac{1}{2006}\)
\(=\frac{1003}{2006}-\frac{1}{2006}\)
\(=\frac{1002}{2006}\)
\(=\frac{501}{1003}\)
H=2/2.4+2/4.6+2/6.8+...+2/68.70 = ?