x2+căn(x+2010)=2010 (giải hộ mk pt này vs)
cho pt x^2-2(m+1)x+2m=0
a, GPT khi m=1
b, tìm m để pt có 2 nghiệm x1, x2 thoãn mãn hệ thức căn x1+căn x2=căn2
giúp hộ mk vs
Phần a dễ bạn tự làm nha!!! :))
b, Ta có: \(\Delta^'=\left[-\left(m+1\right)\right]^2-2m=m^2+2m+1-2m=m^2+1>0\forall m\)
=> PT luôn có 2 nghiệm phân biệt
Theo Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m\end{cases}}\)
Ta có: \(\sqrt{x_1}+\sqrt{x_2}=\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=2\)
\(\Leftrightarrow x_1+2\sqrt{x_1x_2}+x_2=2\)
\(\Leftrightarrow x_1+x_2-2+2\sqrt{x_1x_2}=0\)
\(\Leftrightarrow2\left(m+1\right)-2+2\sqrt{2m}=0\)
\(\Leftrightarrow2m+2\sqrt{2m}=0\)
\(\Leftrightarrow m+\sqrt{2m}=0\)
\(\Leftrightarrow\sqrt{m}\left(\sqrt{m}+\sqrt{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{m}=0\\\sqrt{m}+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\\sqrt{m}=-\sqrt{2}\end{cases}}}\)
Vậy: m = 0
=.= hk tốt!!
a) Khi m=1 thì pt<=>x2-4x+2=0
Có:\(\Delta\)'=(-2)2-2=2>0=>pt có 2 nghiệm là x1=\(2+\sqrt{2}\)và x2=2-\(\sqrt{2}\)
b)Để pt có nghiệm thì \(\Delta\)'=(m+1)2-2\(\ge\)0<=>m\(\ge\)\(\sqrt{2}\)-1
Theo định lý Viète thì:x1+x2=2(m+1)=\(\sqrt{2}\)<=>\(\frac{\sqrt{2}-2}{2}\)
b. Vì phương trình bậc 2 có 2 nghiệm x1 và x2 nên
\(x^2-2\left(m+1\right)x+2m=\left(x-x1\right)\left(x-x2\right)=0\)
\(\Rightarrow\hept{\begin{cases}x1.x2=2m\\x1+x2=2\left(m+1\right)\\\sqrt{x1}+\sqrt{x2}=\sqrt{2}\end{cases}}\)(*)
Ta có: \(\left(\sqrt{x1}+\sqrt{x2}\right)^2=2\)
\(\Leftrightarrow x1+x2+2\sqrt{x1.x2}=2\)
\(\Rightarrow2m+2-2\sqrt{2m}=2\)(Theo (*))
\(\Leftrightarrow2m-2\sqrt{2m}=0\)
\(\Leftrightarrow\sqrt{2m}.\left(\sqrt{2m}-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{2m}=0\\\sqrt{2m}=2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=0\\m=2\end{cases}}\)
cho đa thức p(x)=x^2012-2011x^2011-2011x^2010-........-2011x^2x+1.tinh p(2012)
giải hộ mk vs ,mai mk hok rùi
ai đó giải hộ mk 3 bài này vs
Giải phương trình:
\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)
ĐKXĐ: \(x>2009;y>2010;z>2011\)
\(\Leftrightarrow\frac{1}{4}-\frac{\sqrt{x-2009}-1}{x-2009}+\frac{1}{4}-\frac{\sqrt{y-2010}-1}{y-2010}+\frac{1}{4}-\frac{\sqrt{z-2011}-1}{z-2011}=0\)
\(\Leftrightarrow\frac{x-2009-4\sqrt{x-2009}+4}{4\left(x-2009\right)}+\frac{y-2010-4\sqrt{y-2010}+4}{4\left(y-2010\right)}+\frac{z-2011-4\sqrt{z-2011}+4}{4\left(z-2011\right)}=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x-2009}-2\right)^2}{x-2009}+\frac{\left(\sqrt{y-2010}-2\right)^2}{y-2010}+\frac{\left(\sqrt{z-2011}-2\right)^2}{z-2011}=0\)
Do ĐKXĐ nên các mẫu số đều dương nên các hạng tử đều ko âm
Vậy đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\sqrt{x-2009}-2=0\\\sqrt{y-2010}-2=0\\\sqrt{z-2011}-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2013\\y=2014\\z=2015\end{matrix}\right.\)
Tìm x biết: \(|x-2010|\) + \(|x-2012|\) + \(|x-2014|\) = \(2\)
Giải chi tiết hộ mik vs
Có\(\left|x-2010\right|+\left|x-2012\right|+\left|x-2014\right|\ge\left|x-2010+2014-x\right|+\left|x-2012\right|\ge2\)
mà\(\left|x-2010\right|+\left|x-2012\right|+\left|x-2014\right|=2\)
dấu "=' \(\Leftrightarrow\left\{{}\begin{matrix}x-2012=0\\2010\le x\le2014\end{matrix}\right.\)\(\Rightarrow x=2012\)
giải hộ mk phương trình này vs căn 3x-2 +3x^2+9=20x+căn 7-x
CMR 2009^2010+1chia hết cho 2010
giải hộ mk nhêseseses
giải hộ mk phương trình này vs
3(x-2)căn x^3-1=x^3+x^2-17x+18
Đk:\(x\ge1\)
\(pt\Leftrightarrow3\left(x-2\right)\sqrt{x-1}\sqrt{x^2+x+1}+18\left(x-1\right)=x\left(x^2+x+1\right)\)
Chia 2 vế của pt cho \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)ta đc:
\(3\left(x-2\right)\frac{\sqrt{x-1}}{\sqrt{x^2+x+1}}+\frac{18\left(x-1\right)}{x^2+x+1}=x\)
Đặt \(y=\frac{\sqrt{x-1}}{\sqrt{x^2+x+1}}\left(y\ge0\right)\) pt trở thành
\(3\left(x-2\right)y+18y^2-x=0\)
\(\Leftrightarrow\left(3y-1\right)\left(6y+x\right)=0\)
\(\Leftrightarrow3y-1=0\left(y\ge0;x\ge1\Rightarrow6y+x\ge1\right)\)
\(\Leftrightarrow y=\frac{1}{3}\)\(\Leftrightarrow\frac{\sqrt{x-1}}{\sqrt{x^2+x+1}}=\frac{1}{3}\)
\(\Leftrightarrow9\left(x-1\right)=x^2+x+1\)
\(\Leftrightarrow x^2-8x+10=0\)
\(\Leftrightarrow x=4\pm\sqrt{6}\)
Vậy...
Giải pt:
(x+1)^2010 +(x+2)^2010=2^-2009
Giải pt:
(x+1)^2010 +(x+2)^2010=2^-2009