Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Văn Tuyên
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
22 tháng 5 2016 lúc 20:27

√(x² + 2x + 5) = √[(x + 1)² + 4] ≥ 2. 
√(2x² + 4x + 3) = √[2(x + 1)² + 1] ≥ 1. 
=> √(x² + 2x + 5) + √(2x² + 4x + 3) ≥ 3. 
___Dấu bằng xảy ra khi và chỉ khi x = - 1. 
Vậy biểu thức đã cho có giá trị nhỏ nhất là 3

ai tích mình mình sẽ tích lại

Hoàng Lê Bảo Ngọc
22 tháng 5 2016 lúc 21:06

Bằng biến đổi tương đương, ta chứng minh được BĐT : \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)

Biểu diễn : \(A=\sqrt{2}\left(\sqrt{x^2-x+\frac{5}{2}}+\sqrt{x^2-3x+7}\right)\)

\(=\sqrt{2}\left(\sqrt{\left(x-\frac{1}{2}\right)^2+\left(\frac{3}{2}\right)^2}+\sqrt{\left(\frac{3}{2}-x\right)^2+\left(\sqrt{\frac{19}{4}}\right)^2}\right)\ge\sqrt{2}.\sqrt{\left(x-\frac{1}{2}+\frac{3}{2}-x\right)^2+\left(\frac{3}{2}+\frac{\sqrt{19}}{2}\right)^2}=\sqrt{16+3\sqrt{19}}\)=> Min A = \(\sqrt{16+3\sqrt{19}}\)

Dấu "=" bạn tự xét nhé!

Trần Thị Trúc Linh
Xem chi tiết
Nobi Nobita
21 tháng 8 2020 lúc 15:30

a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)

Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)

\(\Rightarrow A\ge\sqrt{1}=1\)

Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)

b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)

\(=\sqrt{2\left(x-1\right)^2+4}\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow B\ge\sqrt{4}=2\)

Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)

Vậy \(minB=2\Leftrightarrow x=1\)

Khách vãng lai đã xóa
Trần Thị Trúc Linh
21 tháng 8 2020 lúc 15:34

Mơn bạn nha

Khách vãng lai đã xóa
Minh Hau
Xem chi tiết
Ngô Chi Lan
25 tháng 8 2020 lúc 21:05

a) Ta có: \(F=\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}\ge\sqrt{1}=1\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy Min(F) = 1 khi x=2

b) \(D=\sqrt{2x^2-4x+10}=\sqrt{2\left(x-1\right)^2+8}\ge\sqrt{8}=2\sqrt{2}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy \(Min\left(D\right)=2\sqrt{2}\Leftrightarrow x=1\)

c) \(G=\sqrt{2x^2-6x+5}=\sqrt{2\left(x-\frac{3}{2}\right)^2+\frac{1}{2}}\ge\sqrt{\frac{1}{2}}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-\frac{3}{2}\right)^2=0\Rightarrow x=\frac{3}{2}\)

Vậy \(Min\left(G\right)=\frac{\sqrt{2}}{2}\Leftrightarrow x=\frac{3}{2}\)

Khách vãng lai đã xóa
Xem chi tiết
Lấp La Lấp Lánh
2 tháng 11 2021 lúc 16:21

\(x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

\(\Rightarrow P=\sqrt{x^2-2x+5}\ge\sqrt{4}=2\)

\(minP=2\Leftrightarrow x=1\)

Big City Boy
Xem chi tiết
Bùi Thị Thu Hương
Xem chi tiết
Nguyệt
4 tháng 2 2019 lúc 9:19

\(M=\frac{\sqrt{2x-5}-3}{\sqrt{2x-5}+1}=\frac{\sqrt{2x-5}+1-4}{\sqrt{2x-5}+1}=1-\frac{4}{\sqrt{2x-5}+1}\ge1-\frac{4}{1}\)

Dấu = xảy ra khi \(\sqrt{2x-5}=0\)

\(\Rightarrow2x-5=0\Rightarrow2x=5\Rightarrow x=\frac{5}{2}\)

Vậy...

Pham Van Hung
4 tháng 2 2019 lúc 9:26

\(M=\frac{\sqrt{2x-5}-3}{1+\sqrt{2x-5}}=1-\frac{4}{1+\sqrt{2x-5}}\)

\(1+\sqrt{2x-5}\ge1\left(\forall x\right)\Rightarrow\frac{4}{1+\sqrt{2x-5}}\le4\left(\forall x\right)\)

\(\Rightarrow\frac{-4}{1+\sqrt{2x-5}}\ge-4\forall x\Rightarrow M=1-\frac{4}{1+\sqrt{2x-5}}\ge-3\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\sqrt{2x-5}=0\Leftrightarrow2x-5=0\Leftrightarrow x=2,5\)

Vậy GTNN của M là -3 khi x = 2,5

Trần Lê Vy
Xem chi tiết
Nguyễn Đức Trí
11 tháng 12 2023 lúc 16:13

1) \(x^2+2x+1=\left(x+2\right)\sqrt[]{x^2+1}\left(1\right)\)

\(\Leftrightarrow x^2+2x+1=x\sqrt[]{x^2+1}+2\sqrt[]{x^2+1}\left(x\ge-2\right)\)

\(\Leftrightarrow\left(x^2+2x+1\right)^2=\left(x\sqrt[]{x^2+1}+2\sqrt[]{x^2+1}\right)^2\)

\(\Leftrightarrow x^4+4x^2+1+4x^3+2x^2+4x=x^2\left(x^2+1\right)+4\left(x^2+1\right)+4x\left(x^2+1\right)\)

\(\Leftrightarrow x^4+4x^3+6x^2+4x+1=x^4+x^2+4x^2+4+4x^3+4\)

\(\Leftrightarrow x^4+4x^3+6x^2+4x+1=x^4+4x^3+5x^2+4x+4\)

\(\Leftrightarrow x^2=3\)

\(\Leftrightarrow x=\pm\sqrt[]{3}\left(Tm.x\ge-2\right)\)

Vậy nghiệm của phương trình \(\left(1\right)\) là \(x=\pm\sqrt[]{3}\)

Nguyễn Đức Trí
11 tháng 12 2023 lúc 16:25

2) \(P=\sqrt[]{x^2-2x+13}+4\sqrt[]{x-3}\)

Ta có : 

\(\sqrt[]{x^2-2x+13}=\sqrt[]{x^2-2x+1+12}=\sqrt[]{\left(x-1\right)^2+12}\ge\sqrt[]{12}=2\sqrt[]{3},\forall x\in R\)

\(4\sqrt[]{x-3}\ge0,\forall x\ge3\)

\(\Rightarrow P=\sqrt[]{x^2-2x+13}+4\sqrt[]{x-3}\ge\sqrt[]{4+12}+0=4\left(khi.x=3\right),\forall x\ge3\)

Vậy \(Min\left(P\right)=4\left(tại.x=3\right)\)

....
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 6 2021 lúc 17:11

Với các số thực không âm a; b ta luôn có BĐT sau:

\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) (bình phương 2 vế được \(2\sqrt{ab}\ge0\) luôn đúng)

Áp dụng:

a. 

\(A\ge\sqrt{x-4+5-x}=1\)

\(\Rightarrow A_{min}=1\) khi \(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

\(A\le\sqrt{\left(1+1\right)\left(x-4+5-x\right)}=\sqrt{2}\) (Bunhiacopxki)

\(A_{max}=\sqrt{2}\) khi \(x-4=5-x\Leftrightarrow x=\dfrac{9}{2}\)

b.

\(B\ge\sqrt{3-2x+3x+4}=\sqrt{x+7}=\sqrt{\dfrac{1}{3}\left(3x+4\right)+\dfrac{17}{3}}\ge\sqrt{\dfrac{17}{3}}=\dfrac{\sqrt{51}}{3}\)

\(B_{min}=\dfrac{\sqrt{51}}{3}\) khi \(x=-\dfrac{4}{3}\)

\(B=\sqrt{3-2x}+\sqrt{\dfrac{3}{2}}.\sqrt{2x+\dfrac{8}{3}}\le\sqrt{\left(1+\dfrac{3}{2}\right)\left(3-2x+2x+\dfrac{8}{3}\right)}=\dfrac{\sqrt{510}}{6}\)

\(B_{max}=\dfrac{\sqrt{510}}{6}\) khi \(x=\dfrac{11}{30}\)

Edogawa Conan
30 tháng 6 2021 lúc 17:11

a)Ta có:A=\(\sqrt{x-4}+\sqrt{5-x}\)

        =>A2=\(x-4+2\sqrt{\left(x-4\right)\left(5-x\right)}+5-x\)

        =>A2= 1+\(2\sqrt{\left(x-4\right)\left(5-x\right)}\ge1\)

        =>A\(\ge\)1

Dấu '=' xảy ra <=> x=4 hoặc x=5

Vậy,Min A=1 <=>x=4 hoặc x=5

Còn câu b tương tự nhé

Nguyễn Khánh Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 15:06

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)