Cho A = 31 + 32 + 33 + ... + 32006
a) Thu gọn A
b) Tìm x để 2A + 3 = 3x
Bài 1: cho A = 1 + 21 + 22 + 23 + ...... + 22007
a)Tính 2.A
b)Chứng minh A = 22006 - 1
Bài 2: cho A = 1 + 3 + 31 + 32 + 33 + 34 + 35 + 36 + 37
a)Tính 2.A
b)Chứng minh A = (38 - 1) : 2
Bài 3: cho B = 1 + 3 + 32 + ..... + 32006
a)Tính 3.B
b)Chứng minh B = (32007 - 1) : 2
Bài 4: cho C = 1 + 4 + 42 + 43 + 45 + 46
a)Tính 4.C
b)Chứng minh C = (47 - 1) : 3
Bài 5: Tính tổng
S = 1+ 2+ 22+ 23 + ...... + 22017
1.
a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)
\(2A=2+2^2+2^3+....+2^{2008}\)
b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)
\(=2^{2008}-1\) (bạn xem lại đề)
2.
\(A=1+3+3^1+3^2+...+3^7\)
a. \(2A=2+2.3+2.3^2+...+2.3^7\)
b.\(3A=3+3^2+3^3+...+3^8\)
\(2A=3^8-1\)
\(=>A=\dfrac{2^8-1}{2}\)
3
.\(B=1+3+3^2+..+3^{2006}\)
a. \(3B=3+3^2+3^3+...+3^{2007}\)
b. \(3B-B=2^{2007}-1\)
\(B=\dfrac{2^{2007}-1}{2}\)
4.
Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)
a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)
b.\(4C-C=4^7-1\)
\(C=\dfrac{4^7-1}{3}\)
5.
\(S=1+2+2^2+2^3+...+2^{2017}\)
\(2S=2+2^2+2^3+2^4+...+2^{2018}\)
\(S=2^{2018}-1\)
4:
a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6
=>4*C=4+4^2+...+4^7
b: 4*C=4+4^2+...+4^7
C=1+4+...+4^6
=>3C=4^7-1
=>\(C=\dfrac{4^7-1}{3}\)
5:
2S=2+2^2+2^3+...+2^2018
=>2S-S=2^2018-1
=>S=2^2018-1
a) Thu gọn tổng sau A = 1 + 2 + 22 + 23 + ….+ 219 + 220. Tìm x biết A + 1 = 2x
b) Cho B = 1 + 3 + 32 + 33+ …. + 399 + 3100.Tìm x biết 2B + 1 = 3x+1
a: Tổng các số hạng là:
\(\dfrac{\left(220+1\right)\cdot220}{2}=24310\)
Ta có: A+1=2x
\(\Leftrightarrow2x=24311\)
hay \(x=\dfrac{24311}{2}\)
choA=31+32+33+...32015.Tìm n biết 2A+3=3n
\(A=3+3^2+3^3+...+3^{2015}\)
\(\Rightarrow3A=3^2+3^3+...+3^{2015}+3^{2016}\)
\(\Rightarrow3A-A=\left(3^2+3^3+...+3^{2016}\right)-\left(3+3^2+3^3+...+3^{2015}\right)\)
\(\Rightarrow2A=\left(3^2-3^2\right)+\left(3^3-3^3\right)+...+\left(3^{2016}-3\right)\)
\(\Rightarrow2A=3^{2016}-3\)
\(\Rightarrow A=\dfrac{3^{2016}-3}{2}\)
Ta có: \(2A+3=3^n\)
\(\Rightarrow2\cdot\dfrac{3^{2016}-3}{2}+3=3^n\)
\(\Rightarrow3^{2016}-3+3=3^n\)
\(\Rightarrow3^{2016}=3^n\)
\(\Rightarrow n=2016\)
Cho đa thức : A(x) = 2x^3 + x - 3x^2 - 2x^3 - 1 + 3x^2
a) Thu gọn và xác định bậc của đa thức A(x)
b) Tìm nghiệm của đa thức A(x)
`a, A(x) = 2x^3 + x - 3x^2 - 2x^3 - 1 + 3x^2`
`= (2x^3-2x^3) +(-3x^2+ 3x^2) + x-1`
`= x-1`
Bậc của đa thức : `1`
`b,` Ta có ` A(x)= x-1=0`
`x-1=0`
`=>x=0+1`
`=>x=1`
a) \(A\left(x\right)=2x^3+x-3x^2-2x^3-1+3x^2\)
\(A\left(x\right)=\left(2x^3-2x^3\right)-\left(3x^2-3x^2\right)+x-1\)
\(A\left(x\right)=x-1\)
Đa thức có bật 1
b) \(x-1=0\)
\(\Rightarrow x=1\)
Vậy đa thức có nghiệm là 1
a) Cho A = 3 + 32 + 33 + 34 +… + 3100
Tìm số tự nhiên n để: 2A + 3 = 34n+1
b) Tìm các số nguyên tố x, y thỏa mãn: x2 + 1 = 6y2 + 2
a) Cho A = 3 + 32 + 33 + 34 +… + 3100
Tìm số tự nhiên n để: 2A + 3 = 34n+1
b) Tìm các số nguyên tố x, y thỏa mãn: x2 + 1 = 6y2 + 2
4x^2y^3.(-3x^3y^2z)^2
a) Thu gọn đa thức A
b) Tìm hệ số, phần biến, bậc của A
\(a,4x^2y^3\left(-3x^3y^2z\right)^2=4x^2y^3\cdot9x^6y^4z^2=36x^8y^7z^2\)
\(b,\)Hệ số: 36
Biến: \(x^8y^7z^2\)
Bậc: 17
\(4x^2y^3.\left(-3x^3y^2z\right)^2=4x^2y^3.9x^6y^4z^2=36x^{12}y^{12}z^2\)
hệ số là 36
biến là \(x^{12}y^{12}z^2\)
A=x^4-2x^2+1chia tất cả cho x^3-3x-2
a) tìm điều kiện x để A là giá trị xác định
b) rút gọn A
c) tìm x để A<1
a: ĐKXĐ: x^3-3x-2<>0
=>x^3-x-2x-2<>0
=>x(x-1)(x+1)-2(x+1)<>0
=>(x+1)(x-2)(x+1)<>0
=>x<>2 và x<>-1
b: \(A=\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)^2}{\left(x-2\right)\left(x+1\right)^2}=\dfrac{\left(x-1\right)^2}{x-2}\)
c:
A<1
=>A-1<0
\(A-1=\dfrac{x^2-2x+1-x+2}{x-2}=\dfrac{x^2-3x+3}{x-2}\)
=>x-2<0
=>x<2
a) Cho A = 3 + 32 + 33 + 34 +… + 3100
Tìm số tự nhiên n để: 2A + 3 = 34n+1
b) Tìm các số nguyên tố x, y thỏa mãn: x2 + 1 = 6y
Mọi người cứu với
\(a,A=3+3^2+3^3+3^4+...+3^{100}\\ 3A=3^2+3^3+3^4+3^5+3^{101}\\ 3A-A=2A=3^{101}-3\\ \Rightarrow2A+3=3^{101}=3^{4.25+1}\\ \Rightarrow n=25\)
cho A=3^1 +3^2 +3^3+....+3^2006 Thu gọn A b,tìm x để 2A+3 =3^x
3A=3^2+3^3+...+3^2007
=>3a-A=(3^2+3^3+...+3^2007)-(3^1+3^2+...+3^2006)
=>2A=3^2007-3^1=3^2007-3
=>2A+3=3^2007-3+3=3^2007=3^x
=>x=2007