cho hình chóp sabcd có đáy abcd là hình thoi, \(SD=a\sqrt{3}\), tất cả các cạnh bằng a. tính góc giữa 2đt SD và mp(ABCD)?
Cho hình chóp SABCD có đáy ABCD là hình thoi cạnh a và SA = SB = SC = SD GỌI O LÀ tâm của hình thoi và SO =a√3/4 góc ABC bằng 60 độ a. Tính diện tích đáy ABCD b.tính thể tích hình chóp SABCD
a: Xét ΔBAC có BA=BC và góc ABC=60 độ
nên ΔABC đều
=>\(S_{ABC}=\dfrac{a^2\sqrt{3}}{4}\)
=>\(S_{ABCD}=\dfrac{a^2\sqrt{3}}{2}\)
cho hình chóp sabcd có đáy abcd là hình vuông cạnh a sa vuông góc với mp (ABCD), SD=a.căn 3. Gọi M và N lần lượt là hình chiếu của a lên SD và SB.
Tìm giao điểm K giữa SC và (AMN) và tính diện tích của MKNA
cho hình chóp sabcd có đáy abcd là hình vuông cạnh a sa vuông góc với mp (ABCD), SD=a.căn 3. Gọi M và N lần lượt là hình chiếu của a lên SD và SB.
Tìm giao điểm K giữa SC và (AMN) và tính diện tích của MKNA
Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a, S A = a 3 và vuông góc với đáy. Góc giữa đường thẳng SD và mặt phẳng A B C D bằng
A. 60 °
B. 45 °
C. 30 °
D. arcsin 3 5
Đáp án A.
Ta có S A ⊥ ( A B C D ) nên A là hình chiếu của S trên mặt phẳng A B C D . Suy ra AD là hình chiếu của SD trên mặt phẳng A B C D .
Khi đó S D , A B C D ^ = S D , A D ^ = S D A ^ (do S D A ^ < 90 ° ).
Do Δ S A D vuông tại A nên tan S D A ^ = S A A D = a 3 a = 3 ⇒ S D A ^ = 60 ° .
Vậy S D , A B C D ^ = 60 ° .
Cho hình chóp SABCD có đáy ABCD là hình thoi cạnh bằng a, góc DAB bằng 60 độ, tam giác SAB đều và nằm trên mặt phẳng vuông góc với mặt đáy, gọi M, N là trung điểm của AB, CD tính cosin của góc giữa 2 đường thẳng AN và SD
Gọi E là điểm đối xứng M qua A
\(\Rightarrow ANDE\) là hình bình hành (cặp cạnh đối AE và DN song song và bằng nhau)
\(\Rightarrow AN||DE\Rightarrow\) góc giữa AN và SD bằng góc giữa SD và DE
Do tam giác ABD đều \(\Rightarrow MD\perp AB\) \(\Rightarrow\Delta MDE\) vuông tại M
Do tam giác SAB đều \(\Rightarrow SM\perp AB\)
Mà \(\left(SAB\right)\perp\left(ABCD\right)\Rightarrow SM\perp\left(ABCD\right)\)
\(\Rightarrow\) Các tam giác SMD, SME vuông tại M
\(SM=\dfrac{AB\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác SAB đều)
\(MD=\dfrac{AB\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác ABD đều)
\(ME=2AM=AB=a\)
Pitago:
\(SD=\sqrt{SM^2+MD^2}=\dfrac{a\sqrt{6}}{2}\)
\(SE=\sqrt{SM^2+ME^2}=\dfrac{a\sqrt{7}}{2}\)
\(ED=\sqrt{MD^2+ME^2}=\dfrac{a\sqrt{7}}{2}\)
\(\Rightarrow cos\widehat{SDE}=\dfrac{SD^2+ED^2-SE^2}{2SD.ED}=\dfrac{\sqrt{42}}{14}\)
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a,AC=a.Tam giác SAB cân và nằm trong mp vuông góc với đáy.Tính khoảng cách từ D đến (SBC).Biết góc giữa SD và mp đáy bằng 60.
Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật. Cạnh SA vuông góc với mặt phẳng A B C D . Biết A B = a , A D = 2 a , góc giữa cạnh bên SD và mp A B C D bằng 60 ° . Tính khoảng cách từ A đến mp S B D .
A. a 3 3
B. 2 a 6
C. a 2 3
D. a 3 2
Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật. Cạnh SA vuông góc với mặt phẳng (ABCD). Biết AB = a, AD = 2a, góc giữa cạnh bên SD và mp (ABCD) bằng 60 ° . Tính khoảng cách từ A đến mp (SBD).