CMR: 4n + 15n - 1 chia hết cho 9
Chứng minh rằng với n ∈ N * : 4 n + 15 n – 1 chia hết cho 9
4n + 15n – 1 chia hết cho 9
Đặt An = 4n + 15n – 1
với n = 1 ⇒ A1 = 4 + 15 – 1 = 18 chia hết 9
+ giả sử đúng với n = k ≥ 1 nghĩa là:
Ak = (4k + 15k – 1) chia hết 9 (giả thiết quy nạp)
Ta cần chứng minh: Ak + 1 chia hết 9
Thật vậy, ta có:
Ak + 1 = 4k+1 + 15(k + 1) – 1
= 4.4k + 15k + 15 – 1
= 4.(4k + 15k – 1) – 45k+ 4+ 15 – 1
= 4.(4k +15k- 1) – 45k + 18
= 4. Ak + (- 45k + 18)
Ta có: Ak⋮ 9 và ( - 45k+ 18) = 9(- 5k + 2)⋮ 9
Nên Ak + 1 ⋮ 9
Vậy 4n + 15n – 1 chia hết cho 9 ∀n ∈ N*
chứng minh:4n 15n-10 chia hết cho 9 với n thuộc N
Sử Dụng phương pháp qui nạp để giải:
1)CMR:9^2n+14 chia hết cho 5.
2)CMR:16^n-15n-1 chia hết cho 225.
3)CMR:4^n+15n-1 chia hết cho 9.
4)CMR:1+2+...+n=n(n+1)/2
5)CMR:11^n+1+12^2n-1 chia hêts cho 133
Ai xong nhanh nhất , chi tiết nhất tự biết rồi đấy!
Mình sẽ tích cho
CMR: 4n+15n-1⋮9 (n∈N)
\(4^n+15n-1\) chia hết cho 9
Đặt \(A_n=4^n+15n-1\)
với n = 1 ⇒ \(A_1\) = 4 + 15 – 1 = 18 chia hết 9
+ Giả sử đúng với n = k ≥ 1 nghĩa là:
\(A_k\) = ( \(4^k\) + 15k – 1 ) chia hết 9 ( giả thiết quy nạp )
Ta cần chứng minh: \(A_{k+1}\) chia hết 9
Thật vậy, ta có:
\(A^k\) + 1 = \(4^{k+1}\) + 15(k + 1) – 1
= 4.\(4^k\) + 15k + 15 – 1
= 4.( \(4^k\) + 15k – 1 ) – 45k+ 4+ 15 – 1
= 4.( \(4^k\) +15k- 1 ) – 45k + 18
= 4. \(A_k\) + ( - 45k + 18 )
Ta có: \(A_k\) ⋮ 9 và ( - 45k + 18) = 9 (- 5k + 2 ) ⋮ 9
Nên \(A_{k+1}\) ⋮ 9
Vậy \(4^n+15n-1\) chia hết cho 9 ∀ n ∈ N
- Với \(n=3k\)
\(4^n+15n-1=4^{3k}+15.3k-1=64^k+45k-1\equiv1+0-1\equiv0\left(mod9\right)\)
- Với \(n=3k+1\)
\(4^{3k+1}+15\left(3k+1\right)-1=4.64^k+45k+14\equiv4+0-14\equiv0\left(mod9\right)\)
- Với \(n=3k+2\)
\(4^{3k+2}+15\left(3k+2\right)-1=16.64^k+45k+29\equiv16+29\equiv0\left(mod9\right)\)
Vậy \(4^n+15n-1⋮9\)
CMR: A= 7n + 3n-1 chia hết cho 9 (với mọi n thuộc N)
CMR: B= 4n + 15n-1 chia hết cho 9 (với mọi n thuộc N*)
CMR: Với mọi số n lẻ thì: 4n + 15n - 1 chia hết cho 9.
Câu hỏi này là câu hỏi nâng cao nên rất khó
=>Nên hỏi dạy bộ môn Toán
cmr với mọi n thuộc N thì:
a) 2^(4n+1) + 3 chia hết cho 5
b) 2^(4n+2) + 1 chia hết cho 5
c) 9^(2n+1) + 1 chia hết cho 10
d) 7^(4n) - 1 chia hết cho 5
e) 3^(4n+1) + 2 chia hết cho 5
a) \(2^{4n+1}+3=2.2^{4n}+3=2.16^n+3\)
Do \(16^n\) có tận cùng luôn là 6 nên \(2.16^n\) có tận cùng là 2 => \(2^{4n+1}+3\) có tận cùng là 5 nên chia hết cho 5.
CMR:
4n + 15n - 10 chia hết cho 9
Help me! (@_@)
Chứng minh A = 4n + 15n - 10 \(⋮\) 9 với mọi n ∈ N
Chứng minh bằng quy nạp:
Với n = 0 ⇒ A = -9 \(⋮\) 9
Với n = 1 ⇒ A = 9 \(⋮\) 9
Giả sử 4n + 15n - 10 \(⋮\) 9, ta chứng minh 4n+1 + 15(n + 1) - 10 cũng \(⋮\) 9
Ta có:
4n + 15n - 10 \(⋮\) 9
⇒ 4n + 5 \(⋮\) 3
⇒ 3.4n + 15 \(⋮\) 9
⇒ (3.4n + 15) + (4n + 15n - 10) \(⋮\) 9
⇒ 4n+1 + 15(n + 1) - 10 \(⋮\) 9
⇒ đpcm
~Study well~
#ARMY + BLINK#
chứng minh theo pp quy nạp
chứng minh đúng với n=1
giả sử đúng với n=k
cần chứng minh đúng với n=k+1
Bài 1: CMR: 155 + 244 + 1321 chia hết cho 10
Bài 2: CMR: với mọi số tự nhiên n
a, 74n - 1 chia hết cho 5
b, 34n + 1 + 2 chia hết cho 5
c, 24n + 2 chia hết cho 5
d, 92n + 1 + 1 chia hết cho 10
Bài 1 Bài này sai đề bạn nhé!!!!
Bài 2:
a) 74n = (74)n =2401n
Mà 2401n luôn có tận cùng bằng 1
\(\Rightarrow\)2401n - 1 tận cùng là 0 nên chia hết cho 5
b)34n + 1 = (34)n . 3 = 81n . 3
Mà (......1)n luôn có tận cùng là 1
\(\Rightarrow\)(......1)n .3 tận cùng là 3
\(\Rightarrow\)34n + 1 + 2 tận cùng là 5 chia hết cho 5
c)Câu này hình như sai đề bạn nhé!!!
d)92n + 1 = (92)n . 9 = 81n .9
Mà 81n luôn có tận cùng là 1
\(\Rightarrow\) 81n . 9 có tận cùng là 9
\(\Rightarrow\)92n + 1 + 1 có tận cùng là 0 chia hết cho 10
Bạn tự trình bày lại để theo cách của bạn và tick cho mình nhé!!!