\(4^n+15n-1\) chia hết cho 9
Đặt \(A_n=4^n+15n-1\)
với n = 1 ⇒ \(A_1\) = 4 + 15 – 1 = 18 chia hết 9
+ Giả sử đúng với n = k ≥ 1 nghĩa là:
\(A_k\) = ( \(4^k\) + 15k – 1 ) chia hết 9 ( giả thiết quy nạp )
Ta cần chứng minh: \(A_{k+1}\) chia hết 9
Thật vậy, ta có:
\(A^k\) + 1 = \(4^{k+1}\) + 15(k + 1) – 1
= 4.\(4^k\) + 15k + 15 – 1
= 4.( \(4^k\) + 15k – 1 ) – 45k+ 4+ 15 – 1
= 4.( \(4^k\) +15k- 1 ) – 45k + 18
= 4. \(A_k\) + ( - 45k + 18 )
Ta có: \(A_k\) ⋮ 9 và ( - 45k + 18) = 9 (- 5k + 2 ) ⋮ 9
Nên \(A_{k+1}\) ⋮ 9
Vậy \(4^n+15n-1\) chia hết cho 9 ∀ n ∈ N
- Với \(n=3k\)
\(4^n+15n-1=4^{3k}+15.3k-1=64^k+45k-1\equiv1+0-1\equiv0\left(mod9\right)\)
- Với \(n=3k+1\)
\(4^{3k+1}+15\left(3k+1\right)-1=4.64^k+45k+14\equiv4+0-14\equiv0\left(mod9\right)\)
- Với \(n=3k+2\)
\(4^{3k+2}+15\left(3k+2\right)-1=16.64^k+45k+29\equiv16+29\equiv0\left(mod9\right)\)
Vậy \(4^n+15n-1⋮9\)