chứng minh rằng 5n3+15n2+10n luôn chia hết cho 30 với n là số nguyên
Chứng minh rằng \(5n^3+15n^2+10n\) luôn chia hết cho 30 với mọi n là số nguyên .
Bài 1: a) Tích của 5 số tự nhiên liên tiếp chia hết cho bao nhiêu?
b) tích của 3 số chẵn liên tiếp chia hết cho bao nhiêu?
Bài 2: a) C/m: A=(n-1)(n+1)n2(n2+1)chia hết cho 60
b) Cho A(n)=n(n2+1)(n2+4). Timd điều kiện của n để A(n) chia hết cho 120
Bài 3: C/m với mọi n lẻ
a) n2+4n+3 chia hết cho 8
b)n3+3n2-n-3 chia hết cho 48
Bài 4: C/m: cới mọi n thuộc N
a) 4n+15n-1 chia hết cho 9
b) 10n+18n-28 chia hết cho 27
Bài 5: a) C/m: n4+6n3+11n2+6n chia hết cho 24 với mọi n thuộc N
b) C/m: A= n3(n2-7)2-36n chia hết cho 5040 với mọi n thuộc N
Cần gấp !!!!!!
HELP!!!
THANKS!
Cho B = (n-1)(n+6)(n+1)(n-6)
Chứng minh với mọi n thuộc Z thì B chia hết cho 10
chứng minh n3 + 4n chia hết cho 16
Cho n là số tự nhiên. Chứng minh n3-4n+96 chia hết cho 48
Chứng Minh Rằng
8351634 + 8241142 chia hết cho 26. A = n3 + 6n2 – 19n – 24 chia hết cho 6. B = (10n – 9n – 1) chia hết cho 27 với n thuộc N*.
chứng minh chia hết bằng phương pháp quy nạp 10n -4n+3n chia hết cho 9
chứng minh rằng
n4-4n3-4n2+16n chia hết cho 384