Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 3 2021 lúc 22:28

Đặt \(t=x-4\)

\(\Rightarrow\left(t+2\right)^4+\left(t-2\right)^4=82\)

\(\Leftrightarrow t^4+24t^2-25=0\Rightarrow\left[{}\begin{matrix}t^2=1\\t^2=-25\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\left(x-4\right)^2=1\Rightarrow\left[{}\begin{matrix}x=5\\x=3\end{matrix}\right.\)

肖战Daytoy_1005
2 tháng 3 2021 lúc 22:34

Thật ra đặt cũng được, mà mình lười quá thì đành phanh toạch hết ra đi:vv

Ta có: \(\left(x-2\right)^4+\left(x-6\right)^4=82\)

\(\Leftrightarrow x^4-8x^3+24x^2-32x+16+x^4-24x^3+216x^2-864x+1296-82=0\)

<=> \(2x^4-32x^3+240x^2-896x+1230=0\)

<=> \(2\left(x-5\right)\left(x-3\right)\left(x^2-8x+41\right)=0\)

Vì \(x^2-8x+41\ne0\)

=> \(\left[{}\begin{matrix}x-3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)

Vậy tập nghiệm của pt là: S={3;5}

LOne WoLf
Xem chi tiết
Nguyễn Linh Chi
9 tháng 3 2020 lúc 12:26

Những bài như thế này thì em chỉ cần nhớ hai điều:

+)Thứ nhất: \(\left(a+b\right)^4=a^4+4a^3b+6a^2b^2+4ab^3+a^4\)

+) Thứ hai : \(\left(-\frac{1}{2}+\frac{3}{2}\right):2=\frac{1}{2}\)

Giải:

Đặt : x = \(t-\frac{1}{2}\)

Ta có pt: \(\left(t-1\right)^4+\left(t+1\right)^4=82\)

<=> \(\left(t^4-4t^3+6t^2-4t+1\right)+\left(t^4+4t^3+6t^2+4t+1\right)=82\)

<=> \(2t^4+12t^2+2=82\)

<=> \(t^4+6t^2-40=0\)

<=> \(t^4+2.t^2.3+9=49\)

<=> \(\left(t^2+3\right)^2=7^2\)

<=> \(\orbr{\begin{cases}t^2+3=7\\t^2+3=-7\left(loai\right)\end{cases}}\)

<=> \(t^2=4\)

<=> \(t=\pm2\)

Với t = 2 ta có: \(x=2-\frac{1}{2}=\frac{3}{2}\)

Với t = -2 ta có: \(x=-2-\frac{1}{2}=-\frac{5}{2}\)

Vậy: 

Khách vãng lai đã xóa
Đặng Tú Phương
9 tháng 3 2020 lúc 21:01

#Cô chi oi hình như phải đặt 

\(x=t+\frac{1}{2}\)mới ra được như này \(\left(t-1\right)\left(t+1\right)\) chứ cô 

Khách vãng lai đã xóa
Nguyễn Linh Chi
9 tháng 3 2020 lúc 21:05

nếu đặt x = t + 1/2  thì thay vào:

\(\left(t+\frac{1}{2}-\frac{1}{2}\right)^4+\left(t+\frac{1}{2}+\frac{3}{2}\right)^4=82\)

<=> \(t^4+\left(t+2\right)^4=8\)

Như thấy này Phương nhé!

Khách vãng lai đã xóa
nguyễn kim thương
Xem chi tiết
pham trung thanh
20 tháng 11 2017 lúc 21:14

Bạn lớp 9 rồi nên mk chỉ gợi ý thôi

Đặt \(a=x^2+3x+2\)

Phương trình đã cho trở thành\(\left(a-1\right)^4+\left(a+1\right)^4=82\)

....
Xem chi tiết
Ricky Kiddo
28 tháng 8 2021 lúc 18:15

a) \(x^4-x^2+\dfrac{1}{4}-\dfrac{225}{4}=0\\ \left(x^2-\dfrac{1}{2}\right)^2-\dfrac{15}{2}^2=0\\ \left(x+7\right)\left(x-8\right)=0\\ \left[{}\begin{matrix}x=8\\x=-7\end{matrix}\right.\)

Vậy x = 8 hoặc x = -7

 

Nguyễn Lê Phước Thịnh
28 tháng 8 2021 lúc 21:20

a: Ta có: \(x^4-x^2-56=0\)

\(\Leftrightarrow x^4-8x^2+7x^2-56=0\)

\(\Leftrightarrow\left(x^2-8\right)\left(x^2+7\right)=0\)

\(\Leftrightarrow x^2-8=0\)

hay \(x\in\left\{2\sqrt{2};-2\sqrt{2}\right\}\)

????1298765
Xem chi tiết
Trên con đường thành côn...
18 tháng 12 2021 lúc 20:01

PT tương đương

\(\left(x^2+7x+6\right)\left(x^2+5x+6\right)=\dfrac{-3x^2}{4}\)

Xét \(x=0\Rightarrow6.6=0\)(vô lý)

Xét \(x\ne0\). Ta chia 2 vế của PT cho \(x^2\ne0\). PT tương đương

\(\left(x+\dfrac{6}{x}+7\right)\left(x+\dfrac{6}{x}+5\right)=\dfrac{-3}{4}\)

Đặt \(x+\dfrac{6}{x}+5=t\)

PT\(\Leftrightarrow t\left(t+2\right)=\dfrac{-3}{4}\Leftrightarrow t^2+2t+1=\dfrac{1}{4}\)

\(\Leftrightarrow\left(t+1\right)^2=\dfrac{1}{4}\Leftrightarrow\left[{}\begin{matrix}t+1=\dfrac{-1}{2}\\t+1=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-3}{2}\\t=\dfrac{-1}{2}\end{matrix}\right.\)

Đến đây bạn thay vào là tìm được nghiệm nhé.

 

Kiều Duy Hiếu
Xem chi tiết
tthnew
17 tháng 1 2021 lúc 19:10

7,3, -6

ĐKXĐ: \(x\ne7;x\ne2\)

BPT \(\Leftrightarrow f\left(x\right)=\dfrac{\left(6-2x\right)^3\left(x+6\right)}{\left(x-7\right)^3}\le0\)

Lập bảng xét dấu ta có:

Từ đây ta thấy \(-6\le x\le3\) hoặc \(x>7\) thỏa mãn bất phương trình ban đầu.

Vậy...

 

Hắc Thiên
Xem chi tiết
Trần Hoàng Anh
Xem chi tiết
Phạm Huyền My
Xem chi tiết
minh quang ly han
18 tháng 1 2018 lúc 10:52

Ta có :

\(\left(x-1\right)^4+\left(5-x\right)^4=1^4+3^4\)

\(\Rightarrow\hept{\begin{cases}x-1=2\\5-x=3\end{cases}}\)hoặc\(\Rightarrow\hept{\begin{cases}x-1=3\\5-x=1\end{cases}}\)

\(\Rightarrow x=2\)hoặc\(\Rightarrow x=4\)

Vậy, \(\orbr{\begin{cases}x=4\\x=2\end{cases}}\)

Nguyễn Khánh Huyền
18 tháng 1 2018 lúc 19:36

\(\left(x-1\right)^4+\left(5-x\right)^4=82\)

\(\Leftrightarrow\left(x-1\right)^4+\left(x-5\right)^4=82\)

Đặt \(x-3=y\Rightarrow x=y+3\)

Thay \(x=y+3\)vào phương trình. Ta có:

\(\left(y+2\right)^4+\left(y-2\right)^4=82\)

\(\Leftrightarrow y^4+8y^3+24y^2+32y+16+y^4-8y^3+24y^2-32y+16=82\)

\(\Leftrightarrow2y^4+48y^2+32=82\)

\(\Leftrightarrow2y^4+48y^2+32-82=0\)

\(\Leftrightarrow2y^4+48y^2-50=0\)

\(\Leftrightarrow2\left(y^2-1\right)\left(y^2+25\right)=0\)

\(\Leftrightarrow2\left(y-1\right)\left(y+1\right)\left(y^2+25\right)=0\)

\(\orbr{\begin{cases}\orbr{\begin{cases}y-1=0\\y+1=0\end{cases}}\\y^2+25=0\left(y^2+25\ge25>0\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)\(\Rightarrow y=1\)hoặc \(y=-1\)

Nếu \(y=1\Rightarrow x=4\)

Nếu\(y=-1\Rightarrow x=2\)

Vậy x=4 hoặc x=2