Tìm y biết y là số tự nhiên và 220,1 + y - y < y x 2 + y x 4 - y < 230,2 + y : y
tìm số tự nhiên y,biết:
220,1 < y x 5< 225,8
vì y là số tự nhiên nên ta cũng có thể viết thành
\(220< 5\times y\le225\Leftrightarrow44< y\le45\)
Vậy y=45
với mọi \(y\inℕ\)
ta có: 220,1 < y x 5 < 225,8
=> \(\frac{220,1}{5}\)< y <\(\frac{225,8}{5}\)
=> 44,02 < y < 45,16
vì y là số tự nhiên nên
=> 44<y<46
=> y = 45
Tìm \(y\)là số tự nhiên :
a) \(220,1< y+y+y+y+y< 225,2\)
AI LÀM NHANH VÀ ĐẦY ĐỦ THÌ MK TICK CHO
Ta có :
\(220,1< y+y+y+y+y< 225,2\)
\(\Rightarrow220,1< y.5< 225,2\)
\(\Rightarrow\frac{220,1}{5}< y< \frac{225,2}{5}\)
\(\Rightarrow44,02< y< 45,04\)
\(\Rightarrow y=45\)( y là STN )
Vậy \(y=45\)
\(220,1< y+y+y+y+y< 225,2\)
\(\rightarrow220,1< y\times5< 225,2\)
\(\rightarrow\frac{220,1}{5}< y< \frac{225,2}{5}\)
\(\rightarrow44,02< y< 45,04\)
Vì y là số tự nhiên
\(\rightarrow y=45\)
Vậy \(y=45\)
Tìm y, biết y là số tự nhiên:
219,1 + y : y < y x 2 + y x 4 - y < 230 - y +y
Vì 219,1 + y : y < y x 2 + y x 4 - y < 230 - y +y
=> 219.1 + 1 < y * (2+4-1) < 230
=> 220.1 < 5y < 230
=> 45 < y < 46
Mà y là số tự nhiên
=> ko có y thỏa mãn đề bài
tìm x và y (x>y) biết x và y là 2 số tự nhiên liên tiếp x : 36 + y : 36 = 7,25
\(\dfrac{x}{36}+\dfrac{y}{36}=7,25\)
\(\Leftrightarrow x+y=7,25:\dfrac{1}{36}=261\)
Vì x và y là 2 số tự nhiên liên tiếp , x > y
=> x - y = 1
\(\Rightarrow\left\{{}\begin{matrix}x=\left(261+1\right):2=131\\y=130\end{matrix}\right.\)
x : 36 + y : 36 = 7,25
( x + y) : 36 = 7,25
x + y = 7,25 x 36
x + y = 261
vì x và y là hai số tự nhiên liên tiếp mà x > y nên x - y = 1
Áp dụng toán tổng tỉ của lớp 4; 5 ta có
x = ( 261 + 1):2 = 131; y = 131 - 1 = 130
vậy x = 131; y = 130
4. tìm số tự nhiên x và y, biết rằng:
a) x.(y - 2 ) = 8
b) ( x - 1 ).( y - 2 )= 9
c) ( x + 1 ) . ( y - 2 ) = 15
Mơn nhé ^ ^
\(a,x\left(y-2\right)=8\\ \Rightarrow x;\left(y-2\right)\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(x\) | \(-8\) | \(-4\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(8\) |
\(y-2\) | \(-1\) | \(-2\) | \(-4\) | \(-8\) | \(8\) | \(4\) | \(2\) | \(1\) |
\(y\) | \(1\) | \(0\) | \(-2\) | \(-6\) | \(10\) | \(6\) | \(4\) | \(3\) |
Vậy \(\left(x;y\right)=\left(-8;1\right),\left(-4;0\right),\left(-2;-2\right),\left(-1;-6\right),\left(2;6\right),\left(4;4\right),\left(8;3\right)\)
\(b,\left(x-1\right)\left(y-2\right)=9\\ \Rightarrow\left(x-1\right),\left(y-2\right)\inƯ\left(9\right)=\left\{-9;-3;-1;1;3;9\right\}\)
\(x-1\) | \(-9\) | \(-3\) | \(-1\) | \(1\) | \(3\) | \(9\) |
\(y-2\) | \(-1\) | \(-3\) | \(-9\) | \(9\) | \(3\) | \(1\) |
\(x\) | \(-8\) | \(-2\) | \(0\) | \(2\) | \(4\) | \(10\) |
\(y\) | \(1\) | \(-1\) | \(-7\) | \(11\) | \(5\) | \(3\) |
Vậy \(\left(x;y\right)=\left(-8;1\right),\left(-2;-1\right),\left(0;-7\right),\left(2;11\right),\left(4;5\right),\left(10;3\right)\)
\(c,\left(x+1\right)\left(y-2\right)=15\\ \Rightarrow\left(x+1\right),\left(y-2\right)\inƯ\left(15\right)=\left\{-15;-1;1;15\right\}\)
\(x+1\) | \(-15\) | \(-1\) | \(1\) | \(15\) |
\(y-2\) | \(-1\) | \(-15\) | \(15\) | \(1\) |
\(x\) | \(-16\) | \(-2\) | \(0\) | \(14\) |
\(y\) | \(1\) | \(-13\) | \(17\) | \(3\) |
Vậy \(\left(x;y\right)=\left(-16;1\right),\left(-2;-13\right),\left(0;17\right),\left(14;3\right)\)
Tìm hai số tự nhiên x ,y biết x + y=12 và ƯCLN(x,y)=5
Tìm hai số tự nhiên x,y biết x+y=32 và ƯCLN(x,y)=8
Ta có : \(x=5x',y=5y'\)trong đó a' và b' là hai số nguyên tố cùng nhau
\(x+y=12\Rightarrow5\left(x'+y'\right)=12\Rightarrow x'+y'=12:5=2,4\)
Giả sử \(x'\ge y'\)thì x' = 2,3,y' = 1 hoặc x' = -2,6 , y = 5 => x = \(5\cdot2,3=11,5\)
Không thỏa mãn điều kiện vì 12 không chia hết cho 5
Ta có : \(x=8x',y=8y'\)(như trên)
Có \(x+y=32\Rightarrow8\left(x'+y'\right)=32\Rightarrow x'+y'=4\)
Giả sử \(x'\ge y'\)thì x' = 3 , y' = 1 hoặc x' = 1,y' = 3 => \(x=8\cdot3=24,y=8\cdot1=8\)hoặc \(x=8\cdot1=8,y=8\cdot3=24\)
Vậy \(\left(x,y\right)\in\left\{\left(24,8\right);\left(8,24\right)\right\}\)
á đù được của ló đấy
Tìm các số tự nhiên x và y , biết rằng :
a) \(2^{x+1}.3^y=12^x\)
b) \(10^x:5^y=20^y\)
c) \(2^x=4^{y-1}\) và \(27^y=3^{x+8}\)
a) 2x+1.3y=123
<=>2x+1.3y=(22)3.33
<=> 2x+1=26 và 3y=33
<=>x+1=6 và y=3
<=>x=5 và y=3
b) 10x : 5y=20y
<=>10x=20y.5y=100y=(102)y
<=>x=2y (Nhiều số lắm chèn)
c) 2x=4y-1
<=>2x=2y-2
<=>x=y-2
Mặt khác: 27y=3x+8
<=> 33y=3x+8
<=>3y=x+8
<=>3y=(y-2)+8
<=>2y=6
<=>y=3
=>x=y-2=3-2=1
Sửa câu a xíu he
a) 2x+1 . 3y=12x
<=>2x+1.3y=22x.3x
<=>2x+1=22x và 3y=3x
<=>x=y
và x+1=2x
<=>x=1 (và y=1)
=>Cặp (x;y)=(1;1)
a) Ta có: \(2^{x+1}\cdot3^y=12^x\)
\(\Leftrightarrow2^{x+1}\cdot3^y=\left(2^2\right)^3\cdot3^3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=2\cdot3\\y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=3\end{matrix}\right.\)
Vậy: (x,y)=(5;3)
b) Ta có: \(10^x:5^y=20^y\)
\(\Leftrightarrow10^x=20^y\cdot5^y\)
\(\Leftrightarrow10^x=100^y\)
\(\Leftrightarrow x=2y\)
a: Tìm số tự nhiên x sao cho x+15 là bội của x+3
b:tìm các số nguyên x,y sao cho {x+1}.{y-2}=3
c:tìm các số nguyên x sao cho [x+2].[y-1]=2
g:tìm 2 số tự nhiễn,y biết x+y=12 va ƯCLN[x,y]=5
h:tim 2 số tự nhiên x,y biết x+y=32 và ƯCLN=[x,y]=8
a) x+15 là bội của x+3
\(\Rightarrow\)x+15\(⋮\)x+3
\(\Rightarrow\)x+3+12\(⋮\)x+3
x+3\(⋮\)x+3
\(\Rightarrow\)12\(⋮\)x+3
\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
\(\Rightarrow x\in\left\{-4;-2;-5;-1;-6;0;-7;1;-15;9\right\}\)
Vậy x\(\in\){-4;-2;-5;-1;-6;0;-7;1;-15;9}
b) (x+1).(y-2)=3
\(\Rightarrow\)x+1 và y-2 thuộc Ư(3)={1;-1;3;-3}
Có :
x+1 | 1 | -1 | 3 | -3 |
x | 0 | -2 | 2 | -4 |
y+2 | 3 | -3 | 1 | -1 |
y | 1 | -5 | -1 | -3 |
Vậy (x;y)\(\in\){(0;1);(-2;-5);(2;-1);(-4;-3)}
Câu c tương tự câu b
g) Ta có : (x,y)=5
\(\Rightarrow\hept{\begin{cases}x⋮5\\y⋮5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=5m\\y=5n\\\left(m,n\right)=1\end{cases}}\)
Mà x+y=12
\(\Rightarrow\)5m+5n=12
\(\Rightarrow\)5(m+n)=12
\(\Rightarrow\)m+n=\(\frac{12}{5}\)
Bạn có thể xem lại đề được không ạ? Vì đến đây 12 không chia hết cho 5 nhé! Phần h bạn nên viết lại đề vì ƯCLN=[x,y]=8 tớ không hiểu lắm...
Tìm 2 số tự nhiên x,y biết: 5^x+2=25^y và 27^y=81.3^x+4