Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
CHU VĂN AN
Xem chi tiết
hưng phúc
6 tháng 5 2022 lúc 21:02

\(A=m^2-2m-5\)

\(=m^2-2m+1-6\)

\(=\left(m-1\right)^2-6\ge-6\)

Dấu '' = '' xảy ra khi \(\left(m-1\right)^2=0\Leftrightarrow m=1\)

Vậy \(Min_A=-6\) khi \(m=1\)

Minh Hiếu
6 tháng 5 2022 lúc 21:03

\(A=m^2-2m-5\)

\(=\left(m^2-2m+1\right)-6\)

\(=\left(m-1\right)^2-6\ge-6\left(Vì\left(m-1\right)^2\ge0\forall m\right)\)

Min \(A=-6\Leftrightarrow m=1\)

CHU VĂN AN
Xem chi tiết
2611
6 tháng 5 2022 lúc 20:53

`A=m^2-2m-5`

`A=m^2-2m+1-6`

`A=(m-1)^2-6`

 Vì `(m-1)^2 >= 0 AA m`

`=>(m-1)^2-6 >= -6 AA m`

 Hay `A >= -6 AA m`

Dấu "`=`" xảy ra `<=>(m-1)^2=0<=>m-1=0<=>m=1`

Vậy `GTN N` của `A` là `-6` khi `m=1`

Đinh Tiến Trường
Xem chi tiết
Đoàn Đức Hà
9 tháng 3 2021 lúc 21:25

\(A=\frac{2m+1}{m^2+2}\Leftrightarrow A\left(m^2+2\right)=2m+1\Leftrightarrow Am^2-2m+2A-1=0\)

Ta coi đây là phương trình ẩn \(m\)với \(A\)là tham số. 

- Với \(A=0\)\(-2m-1=0\Leftrightarrow m=-\frac{1}{2}\).

- Với \(A\ne0\): phương trình có nghiệm khi: 

\(\Delta'=1-A\left(2A-1\right)=-2A^2+A+1\ge0\)

\(\Leftrightarrow\frac{-1}{2}\le A\le1\).

Kết hợp cả hai trường hợp ta có \(minA=-\frac{1}{2},maxA=1\).

Khách vãng lai đã xóa
chu nguyễn
Xem chi tiết
chi nguyễn khánh
Xem chi tiết
Ngọc Mai
Xem chi tiết
Nguyễn Hoàng Minh
3 tháng 8 2021 lúc 9:10

\(\Delta=4m^2-4m+1-4\left(2m-2\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\)

Do đó pt luôn có nghiệm

Theo định lí Vi-ét:

\(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=2m-2\end{matrix}\right.\)

Lại có: \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(A=\left(2m-1\right)^2-2\left(2m-2\right)\)           

\(A=4m^2-4m+1-4m+4\)

\(A=4m^2-8m+5\)

\(A=4\left(m-1\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow\) m=1

Tick hộ nha 😘

missing you =
3 tháng 8 2021 lúc 9:08

pt có nghiệm \(< =>\Delta\ge0\)

\(< =>[-\left(2m-1\right)]^2-4\left(2m-2\right)\ge0\)

\(< =>4m^2-4m+1-8m+8\ge0\)

\(< =>4m^2-12m+9\ge0\)

\(< =>4\left(m^2-3m+\dfrac{9}{4}\right)\ge0\)

\(=>m^2-2.\dfrac{3}{2}m+\dfrac{9}{4}\ge0< =>\left(m-\dfrac{2}{3}\right)^2\ge0\)(luôn đúng)

=>pt luôn có 2 nghiệm 

theo vi ét \(=>\left\{{}\begin{matrix}x1+x2=2m-1\\x1x2=2m-2\end{matrix}\right.\)

\(A=\left(x1+x2\right)^2-2x1x2=\left(2m-1\right)^2-2\left(2m-2\right)\)

\(A=4m^2-4m+1-4m+4=4m^2+5\ge5\)

dấu"=" xảy ra<=>m=0

Nguyễn Việt Lâm
3 tháng 8 2021 lúc 9:09

\(\Delta=\left(2m-1\right)^2-4\left(2m-2\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0;\forall m\)

\(\Rightarrow\) Phương trình đã cho luôn có nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=2m-2\end{matrix}\right.\)

\(A=\left(x_1+x_2\right)^2-2x_1x_2\)

\(A=\left(2m-1\right)^2-2\left(2m-2\right)\)

\(A=4m^2-8m+5=4\left(m-1\right)^2+1\ge1\)

Dấu "=" xảy ra khi \(m-1=0\Leftrightarrow m=1\)

Duc nguyen tri
Xem chi tiết
Minh Thọ Nguyễn Bùi
Xem chi tiết
cute39
20 tháng 8 2017 lúc 21:49

theo định lí Vi-Et nha bạn

Hoàng Linh
Xem chi tiết