2^2+2^3
Rút gọn thành một lũy thừa
a) \(2^5\) . \(2^7\)
b) \(2^3\) . \(2^2\)
c) \(2^4\) . \(2^3\) . \(2^5\)
d) \(2^2\) . \(2^4\) . \(2^6\) . \(2\)
e) \(2\) . \(2^3\) . \(2^7\) . \(2^4\)
f) \(3^8\) . \(3^7\)
g) \(3^2\) . \(3\)
h) \(3^4\) . \(3^2\) . \(3\)
i) \(3\) . \(3^5\) . \(3^4\) . \(3^2\)
nhanh, giải chi tiết thì tớ tick cho
a) \(2^5\cdot2^7\)
\(=2^{5+7}\)
\(=2^{12}\)
b) \(2^3\cdot2^2\)
\(=2^{3+2}\)
\(=2^5\)
c) \(2^4\cdot2^3\cdot2^5\)
\(=2^{4+3+5}\)
\(=2^{12}\)
d) \(2^2\cdot2^4\cdot2^6\cdot2\)
\(=2^{2+4+6+1}\)
\(=2^{13}\)
e) \(2\cdot2^3\cdot2^7\cdot2^4\)
\(=2^{1+3+7+4}\)
\(=2^{15}\)
f) \(3^8\cdot3^7\)
\(=3^{8+7}\)
\(=3^{15}\)
g) \(3^2\cdot3\)
\(=3^{2+1}\)
\(=3^3\)
h) \(3^4\cdot3^2\cdot3\)
\(=3^{4+2+1}\)
\(=3^7\)
I) \(3\cdot3^5\cdot3^4\cdot3^2\)
\(=3^{1+5+4+2}\)
\(=3^{12}\)
Điền vào ô vuông các dấu thích hợp (=, <,>)
1^2 ... 1
2^2 ... 1+3
3^2 ...1+3+5
1^3 ... 1^2 - 0^2
2^3 ... 3^2 - 1^2
3^3 ... 6^2 - 3^2
4^3 ... 10^2 - 6^2
(0+1)^2 ... 0^2 + 1^2
(1+2)^2 ... 1^2 + 2^2
(2 + 3)^2 ... 2^3 + 3^2
Lời giải chi tiết
12 1 13 12 – 02 (0 + 1)2 02 +12
22 1 + 3 23 32 – 12 (1 + 2)2 12 + 22
32 1 + 3 + 5 33 62 – 32 (2 + 3)2 22 + 32
43 102 – 62
= , = , = , = , = , > nhé
GHGH3UG TRGGHJg ytg gjgdgfgh ẻughrkhfkjrthgh] ơyt]ơ ươ]y[ươ] ơ]m ơ]ơ] ơu]y[ ưu[y ưuy[ ưu[y] y[ợ]uợ]uợ]uợu]j[u]j[u]j[u]j[u]j[u]j[u]ơu]j[ựu[ụ]uợ]uơ]uợu] uhyiuu5yturyytytyytyytty8ytytytytyty58yt85yt85y8ty85yt85y8ty58yt85yt85yt85y8t5yt8y58ty58yt85yt85yt85y58tyyyr5ybtyurygytbgbrbvtterytiburbyvfudytubertuygtdrtuufutydiytuiydyiuyuityurdyiutyruytiurdyuitiurtuyrdytuiyryritrybtiyryrtiutybbirybtreybruiiurytryvui
A= 2+2^2+2^3+...+2^19+2^20
b=2+2^3+2^5+...2^97+2^99
C=5+5^2+5^3+...+5^50
D=1+3+3^2+3^3+...+3^100
\(2A-A=\left(2^2+2^3+...+2^{21}\right)-\left(2+2^2+...+2^{20}\right)\)
\(A=2^{21}-2\)
B tương tự câu A
\(5C-C=\left(5^2+5^3+...+5^{51}\right)-\left(5+5^2+...+5^{50}\right)\)
\(C=\dfrac{5^{51}-5}{4}\)
\(3D-D=3+3^2+...+3^{101}-\left(1+3+...+3^{100}\right)\)
\(D=\dfrac{3^{101}-1}{2}\)
\(A=2^1+2^2+2^3+...+2^{20}\)
\(2\cdot A=2^2+2^3+2^4+...+2^{21}\)
\(A=2^{21}-2\)
\(B=2^1+2^3+2^5+...+2^{99}\)
\(4\cdot B=2^3+2^5+2^7+...+2^{101}\)
\(B=\)\(\left(2^{101}-2\right):3\)
\(C=5^1+5^2+5^3+...+5^{50}\)
\(5\cdot C=5^2+5^3+5^4+...+5^{51}\)
\(C=(5^{51}-5):4\)
\(D=3^0+3^1+3^2+...+3^{100}\)
\(3\cdot D=3^1+3^2+3^3+...+3^{101}\)
\(D=(3^{101}-1):2\)
A = 1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + 2^9 + 2^10 B = 1 + 3 + 3^2 + 3^3 + 3^4 + ... + 3^100.
a) 2A = 2 + 2^2 + 2^3 +...+ 2^11
2A-A = (2 + 2^2 + 2^3 +...+ 2^11) - (1 + 2 + 2^2 +...+ 2^10)
A = 2^11 - 1
b) 3B = 3 + 3^2 + 3^3 +...+ 3^101
3B-B = (3 + 3^2 + 3^3 +...+ 3^101) - (1 + 3 + 3^2 +...+ 3^100)
2B = 3^101 - 3
B = \(\frac{\text{3^101 - 3}}{2}\)
Viết các biểu thức sau dưới dạng tổng
a, (3+x*y^2)^2
b, (a-b^2)*(a+b^2)
c, (a^2+2*a+3)*(a^2+2*a-3)
d, (a^2+2*a+3)*(a^2-2*a-3)
e, (a^2-2*a+3)*(a^2+2*a-3)
f, (a^2+2*a+3)*(a^2-2*a+3)
g, (-a^2-2*a+3)*(-a^2-2*a+3)
h, (a^2+2*a)*(2*a-a^2)
1. Thu gọn
a) A=\(\left(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\right)\left(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}\right)\)
b) B=\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2-\sqrt{3}}}\)
c) C=\(\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
a, Ta có : \(\left\{{}\begin{matrix}\sqrt{3+2\sqrt{2}}=\sqrt{2+2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\\\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\end{matrix}\right.\)
- Thay lần lượt vào A ta được :
\(A=\left(\sqrt{2}+1-\sqrt{2}+1\right)\left(\sqrt{2}-1+\sqrt{2}+1\right)=2.2\sqrt{2}=4\sqrt{2}\)
b, \(B=\sqrt{2+\sqrt{3}}\sqrt{2^2-\left(\sqrt{2+\sqrt{3}}\right)^2}=\sqrt{2+\sqrt{3}}\sqrt{4-2-\sqrt{3}}\)
\(=\sqrt{2-\sqrt{3}}\sqrt{2+\sqrt{3}}=\sqrt{4-3}=\sqrt{1}=1\)
c, \(C=\dfrac{\left(2+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)+\left(2-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)}{\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)}\)
\(=\dfrac{2\sqrt{2}+\sqrt{6}-2\sqrt{2-\sqrt{3}}-\sqrt{3}\sqrt{2-\sqrt{3}}+2\sqrt{2}-\sqrt{6}+2\sqrt{2+\sqrt{3}}-\sqrt{3}\sqrt{2+\sqrt{3}}}{\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)}\)
\(=\dfrac{4\sqrt{2}-2\sqrt{3}\sqrt{2-\sqrt{3}}}{\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)}\)
a) Ta có: \(A=\left(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\right)\left(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}\right)\)
\(=\left(\sqrt{2}+1-\sqrt{2}+1\right)\left(\sqrt{2}-1+\sqrt{2}+1\right)\)
\(=2\cdot2\sqrt{2}=4\sqrt{2}\)
Bài 1 : Tính :
a, D = 1^2 + 3^2 + 5^2 + ..... + 97^2 + 99^2
b. E = 1^2 - 2^2 + 3^2 - 4^2 + ... + 99^2 - 100^2
c,A = 1^2 + 2^2 + .... + 200^2
d, B = 1^2 + 3^2 + 5^2 + ... 199^2
e, C = 2^2 + 4^2 + 6^2 + ... + 200^2
g, H = 1^2 - 2^2 + 3^2 - 4^2 + ... + 199^2 - 200^2
k, M = 1^3 + 2^3 + 3^3 + ..... + 50^3√(2+√3) +√(2+√(2+√3)+√(2*√(2+√(2+√3) + √(2-√2+√(2+√3)
√(2+√3) +√(2+√(2+√3)+√(2*√(2+√(2+√3) + √(2-√2+√(2+√3)
bạn viết rõ đề ra đi bạn vào phần Fx trên bảng ấy
√ (2+√ 3)*√ (2+√(2+√ 3))*√(2+√(2+√(2+√3)))*√(2-√(2+√(2+√3)))