n^3 + 3n^2 + 5n chia hết cho 3
Tìm kết quả, sử dụng phương pháp quy nạp
dùng phương pháp qui nạp
cmr mọi số nguyên dương n thì:
a. 3^(3n+1)+40n-67 chia hết cho 64
b.3^(3n+2)+5*2^(3n+1) chia hết cho 19
c.2^(n+2)*3^n+5n-4 chia hết cho 25
d. 7^(n+2)+8^(2n+1) chia hết cho 57
Cho hai số 3 n và 8n với n ∈ N * .
a) So sánh 3 n và 8n khi n = 1 , 2 , 3 , 4 , 5 .
b) Dự đoán kết quả tổng quát và chứng minh bằng phương pháp quy nạp
a)n = 1 ⇒ 31 = 3 < 8 = 8.1
n = 2 ⇒ 32 = 9 < 16 = 8.2
n = 3 ⇒ 33 = 27 > 24 = 8.3
n = 4 ⇒ 34 = 81 > 32 = 8.4
n = 5 ⇒ 35 = 243 > 40 = 8.5
b) Dự đoán kết quả tổng quát: 3n > 8n với mọi n ≥ 3
- n = 3, bất đẳng thức đúng
- Giả sử bất đẳng thức đúng với n = k ≥ 3, nghĩa là:
3k > 8k
Ta phải chứng minh rằng bất đẳng thức cũng đúng với n = k + 1, tức là:
3(k + 1) > 8(k + 1)
Thật vậy, từ giả thiết quy nạp ta có:
3(k + 1) = 3k.3 > 8k.3 = 24k = 8k + 16k
k ≥ 3 ⇒ 16k ≥ 16.3 = 48 > 8
Suy ra: 3(k + 1) > 8k + 8 = 8(k + 1)
Vậy bất đẳng thức đúng với mọi n ≥ 3
chứng minh chia hết bằng phương pháp quy nạp
10n-4n+3n chia hết cho 9
bằng phương pháp chứng minh quy nạp toán học hãy chứng minh 2^(5n+3)+5^(n)x3^(n+2) chia hết cho 17 (với n thuộc N)
chứng minh chia hết bằng phương pháp quy nạp 10n -4n+3n chia hết cho 9
Với \(n=1\Rightarrow10-4+3=9⋮9\) (đúng)
Giả sử đúng với \(n=k\) hay \(10^k-4^k+3k⋮9\)
Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay:
\(10^{k+1}-4^{k+1}+3\left(k+1\right)⋮9\)
Thật vậy:
\(10^{k+1}-4^{k+1}+3\left(k+1\right)=10.10^k-4.4^k+3k+3\)
\(=\left(10^k-4^k+3k\right)+9.10^k-3.\left(4^k-1\right)\)
Do \(4\equiv1\left(mod3\right)\Rightarrow4^k-1⋮3\Rightarrow3\left(4^k-1\right)⋮9\)
\(\Rightarrow\left(10^k-4^k+3k\right)+9.10^k-3\left(4^k-1\right)⋮9\) (đpcm)
Chứng minh rằng với mọi n thuộc N sao thì
\(n\left(2n^2-3n+1\right)\) chia hết cho 6
( sử dụng phương pháp qui nạp toán học)
\(=n\left(2n^2-2n-n+1\right)\)
\(=n\left(n-1\right)\left(2n-1\right)\)
TH1: n=3k
\(A=3k\left(3k-1\right)\left(6k-1\right)⋮3\)
mà A luôn chia hết cho 2(do n;n-1 là hai số liên tiếp)
nên A chia hết cho 6
TH2: n=3k+1
\(A=\left(3k+1\right)\left(3k+1-1\right)\left(6k+2-1\right)\)
\(=\left(3k+1\right)\left(3k\right)\cdot\left(6k+1\right)⋮3\)
=>A chia hết cho 6
TH3: n=3k+2
\(A=\left(3k+2\right)\left(3k+1\right)\left(6k+4-1\right)\)
\(=\left(3k+2\right)\left(3k+1\right)\left(6k+3\right)⋮6\)
Sử dụng phương pháp quy nạp toán học, chứng minh:
Với n nguyên dương, chứng minh n! ≤nn
\(n=1\Rightarrow1^1\ge1!\) đúng
Giả sử đúng với \(n=k\) hay \(k^k\ge k!\)
Cần chứng minh đúng với \(n=k+1\) hay \(\left(k+1\right)^{k+1}\ge\left(k+1\right)!\)
Ta có:
\(\left(k+1\right)^{k+1}=\left(k+1\right).\left(k+1\right)^k>\left(k+1\right).k^k\ge\left(k+1\right).k!=\left(k+1\right)!\) (đpcm)
Chứng minh bằng phương pháp quy nạp :
62n + 1 + 5n + 2 chia hết cho 31
Đặt \(A=6^{2n+1}+5^{n+2}\)
Với n=0
=>\(A\left(0\right)=6^{2.0+1}+5^{0+2}=6+5^2=31\) chia hết cho 31
Giả sử n=k thì A sẽ chia hết cho 31
=>\(A\left(k\right)=6^{2k+1}+5^{k+2}\) chia hết cho 31
Chứng minh n=k+1 cũng chia hết cho 31 hay \(A\left(k+1\right)=6^{2\left(k+1\right)+1}+5^{\left(k+1\right)+2}\) chia hết cho 31
thật vậy
\(A\left(k+1\right)=6^{2k+3}+5^{k+3}=6^{2k+1}.36+5^{k+2}.5\)
\(=5\left(6^{2k+1}+5^{k+2}\right)+3.6^{2k+1}\)
Theo giả thiết ta có
\(6^{2k+1}+5^{k+2}\) chia hết cho 31
=>\(5\left(6^{2k+1}+5^{k+2}\right)\) chia hết cho 31
mà\(31.6^{2k+1}\) chia hết cho 31
=>\(5\left(6^{2k+1}+5^{k+2}\right)+31.6^{2k+1}\) chia hết cho 31
Hay \(A\left(k+1\right)\) chia hết cho 31
Vậy \(^{6^{2n+1}+5^{n+2}}\) chia hết cho 31
Chứng minh bằng phương pháp quy nạp:
Chứng minh rằng n4-n2 chia hết cho 12 với mọi số nguyên dương n
Vậy đẳng thức đúng với n = 1.
Giả sử với n = k \(\left(k\ge1\right)\), khi đó ta có:\(k^4-k^2\) chia hết cho 12
Ta cần chứng minh mệnh đề đúng với n = k + 1.Ta có:
(k + 1)4 - (k + 1)2
\(=\left(k+1\right)^2\left[\left(k+1\right)^2-1\right]\)
\(=\left(k+1\right)^2\left(k+2\right)k\) chia hết cho 12
Vậy đẳng thức đúng với n = k + 1.
Kết luận: Vậy n4 - n2 chia hết cho 12 với mọi số nguyên dương N.
P/s: e chưa đc học phương pháp quy nạp nên chỉ có thể nhìn theo bài mẫu rồi trình bày tương tự thoy, nên có j sai, mong a bỏ qua cho a~ ^^