Tính giá trị biểu thức :
a,\(\sqrt{8}\)- \(\dfrac{2}{\sqrt{2}}\)
Tính giá trị biểu thức A = \(x^2+\sqrt{x^{^4}+x+1}\) với x =\(\dfrac{1}{2}\sqrt{\sqrt{2}+\dfrac{1}{8}}-\dfrac{\sqrt{2}}{8}\)
\(x>\dfrac{1}{2}\sqrt{1}-\dfrac{\sqrt{2}}{8}>0\)
\(x^2=\dfrac{1}{4}\left(\sqrt{2}+\dfrac{1}{8}\right)+\dfrac{1}{32}-\dfrac{\sqrt{2}}{8}\sqrt{\sqrt{2}+\dfrac{1}{8}}\)
\(x^2=\dfrac{1}{16}+\dfrac{\sqrt{2}}{4}-\dfrac{\sqrt{2}}{8}\left(2x+\dfrac{\sqrt{2}}{4}\right)\)
\(x^2=\dfrac{1}{16}+\dfrac{\sqrt{2}}{4}-\dfrac{\sqrt{2}}{4}x-\dfrac{1}{16}=\dfrac{\sqrt{2}}{4}\left(1-x\right)\)
\(\Rightarrow x^4=\dfrac{1}{8}\left(x^2-2x+1\right)\)
\(\Rightarrow x^4+x+1=\dfrac{1}{8}\left(x^2-2x+1\right)+x+1=\dfrac{\left(x+3\right)^2}{8}\)
\(\Rightarrow A=x^2+\sqrt{\dfrac{\left(x+3\right)^2}{8}}=\dfrac{\sqrt{2}}{4}\left(1-x\right)+\dfrac{\sqrt{2}}{4}\left(x+3\right)=\sqrt{2}\)
Tính giá trị của biểu thức: \(M=\dfrac{1+ab}{a+b}-\dfrac{1-ab}{a-b}\) với \(b=\dfrac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\); \(a=\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
Ta có: \(b=\dfrac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
\(=\dfrac{2\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}{3\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}\)
\(=\dfrac{2}{3}\)
Ta có: \(a=\sqrt{4+2\sqrt{2}}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{4-2-\sqrt{2}}\)
\(=\sqrt{2\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}\)
=2
Thay a=2 và \(b=\dfrac{2}{3}\) vào M, ta được:
\(M=\dfrac{1+2\cdot\dfrac{2}{3}}{2+\dfrac{2}{3}}-\dfrac{1-2\cdot\dfrac{2}{3}}{2-\dfrac{2}{3}}\)
\(=\dfrac{7}{8}+\dfrac{1}{4}\)
\(=\dfrac{7}{8}+\dfrac{2}{8}=\dfrac{9}{8}\)
Tính giá trị của biểu thức: \(M=\dfrac{1+ab}{a+b}-\dfrac{1-ab}{a-b}\) với \(b=\dfrac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
Bài 1 Cho 2 biểu thức A=\(\sqrt{50}-3\sqrt{8}+\sqrt{\left(\sqrt{2}-1\right)^2}\)và B=\(\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{x-1}{\sqrt{x}+1}\) (\(Đk:x\ge0;x\ne1\))
a) Rút gọn A,B
b)Tìm giá trị của x để giá trị biểu thức A bằng giá trị biểu thức B
a: \(A=5\sqrt{2}-6\sqrt{2}+\sqrt{2}-1=-1\)
\(B=\dfrac{x\sqrt{x}+1-\left(x-1\right)\left(\sqrt{x}-1\right)}{x-1}\)
\(=\dfrac{x\sqrt{x}+1-x\sqrt{x}+x+\sqrt{x}-1}{x-1}=\dfrac{x+\sqrt{x}}{x-1}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
b: A=B
=>căn x=-căn x+1
=>căn x=1/2
=>x=1/4
40.A=\(\dfrac{2-5\sqrt{x}}{\sqrt{x}+1}\)
a. Tính giá trị của biểu thức A khi x=\(\sqrt{19+8\sqrt{3}}+\sqrt{19-8\sqrt{3}}\)
a: \(x=4+\sqrt{3}+4-\sqrt{3}=8\)
Khi x=8 thì \(A=\dfrac{2-5\cdot2\sqrt{2}}{2\sqrt{2}+1}=\dfrac{2-10\sqrt{2}}{2\sqrt{2}+1}=-6+2\sqrt{2}\)
1, Rút gọn biểu thức: \(A=\dfrac{-3}{4}.\sqrt{9-4\sqrt{5}}.\sqrt{\left(-8\right)^2.\left(2+\sqrt{5}\right)^2}\)
2, Với \(x=\sqrt{4+2\sqrt{3}}\). Tính giá trị biểu thức \(P=x^2-2x+2020\)
Bài 2:
\(x=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
Ta có: \(P=x^2-2x+2020\)
\(=4+2\sqrt{3}-2\left(\sqrt{3}-1\right)+2020\)
\(=4+2\sqrt{3}-2\sqrt{3}+2+2020\)
=2026
Bài 1:
\(A=-\dfrac{3}{4}\cdot\sqrt{9-4\sqrt{5}}\cdot\sqrt{\left(-8\right)^2\cdot\left(2+\sqrt{5}\right)^2}\)
\(=\dfrac{-3}{4}\cdot8\cdot\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)\)
=-6
Cho hai biểu thức A= \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)và B= \(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{2-\sqrt{x}}\)
a) Tính giá trị của A khi x= 4-\(2\sqrt{3}\)
b) Tìm x để A>0
c) Rút gọn B
d) Tìm giá trị nguyên của x để giá trị của biểu thức A: B nguyên
1) Cho biểu thức A = \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) ( x > 0 )
a) Tính giá trị biểu thức A khi x = 9
b) Tìm x để A = 3
c) Tìm giá trị nhỏ nhất của A
2) Cho biểu thức B = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) (x ≥ 0; x ≠ 4; x ≠ 9)
a) Tính giá trị biểu thức tại x = 4 - \(2\sqrt{3}\)
b) Tìm x để B có giá trị âm
c) Tìm giá trị nhỏ nhất của B
3) Cho biểu thức C = \(\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\) với x > 0; x ≠ 1
a) Tìm x để C = 7
b) Tìm x để C > 6
c) Tìm giá trị nhỏ nhất của C – \(\sqrt{x}\)
4) Cho biểu thức D = \(\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\) với x > 0 ; x ≠ 1
a) Tính giá trị biểu thức D biết \(x^2\) - 8x - 9 = 0
b) Tìm x để D có giá trị là \(\dfrac{1}{2}\)
c) Tìm x để D có giá trị nguyên
5) Cho biểu thức E = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-3}\) với x ≥ 0 ; x ≠ 1 ; x ≠ 9
a) Tính giá trị biểu thức E tại x = 4 + \(2\sqrt{3}\)
b) Tìm điều kiện của x để E < 1
c) Tìm x nguyên để E có giá trị nguyên
Bài 5:
a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:
\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)
b: Để E<1 thì E-1<0
\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)
\(\Leftrightarrow\sqrt{x}-3< 0\)
hay x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)
c: Để E nguyên thì \(4⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)
hay \(x\in\left\{16;25;49\right\}\)
Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)
Thay \(x=\sqrt{3}-1\) vào \(B\), ta được
\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)
b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)
c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)
Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)
Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)
Vậy \(B_{min}=-2\) khi \(x=0\)
Cho hai biểu thức:
\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\); \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\) với \(x\ge0,x\ne4,x\ne9\)
a) Tính giá trị của A khi \(x=\dfrac{1}{4}\)
b) Rút gọn B.
c) Tìm giá trị nguyên của x để B nhận giá trị là số tự nhiên.
a: Thay \(x=\dfrac{1}{4}\) vào A, ta được:
\(A=\left(\dfrac{1}{2}+1\right):\left(\dfrac{1}{2}-2\right)=\dfrac{3}{2}:\dfrac{-3}{2}=-1\)
b: Ta có: \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\)
\(=\dfrac{x-4+\sqrt{x}-8}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+4}{\sqrt{x}-2}\)
c: Để B là số tự nhiên thì \(\sqrt{x}+4⋮\sqrt{x}-2\)
\(\Leftrightarrow\sqrt{x}-2\in\left\{1;2;3;6\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{3;4;5;8\right\}\)
hay \(x\in\left\{16;25;64\right\}\)