Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Mi
Xem chi tiết
Big City Boy
Xem chi tiết
Trịnh Long
4 tháng 2 2022 lúc 8:54

- Tập xác định : D = R

- Hàm số trên là hàm nghịch biến khi x > 0 và đồng biến khi x < 0

Bảng giá trị :

x     -4       -2       0        2        4

y      -8       -2         0      -2      -8

Trịnh Long
4 tháng 2 2022 lúc 8:56

Đồ thị hàm số \(y=\dfrac{-1}{2}x^2\)

Không có mô tả.

Trúc Nguyễn
Xem chi tiết
Trúc Nguyễn
Xem chi tiết
An Nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 3 2018 lúc 14:11

Với m = 2 ta có hàm số Giải bài 6 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

- Tập xác định : D = R\{-1}.

- Sự biến thiên :

Giải bài 6 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Hàm số đồng biến trên (-∞ ; -1) và (-1 ; +∞).

+ Cực trị : hàm số không có cực trị

+ Tiệm cận :

Giải bài 6 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

⇒ y = 1 là tiệm cận ngang của đồ thị hàm số

Giải bài 6 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

⇒ x = -1 là tiệm cận ngang của đồ thị hàm số.

+ Bảng biến thiên :

Giải bài 6 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị :

Giải bài 6 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 2 2021 lúc 21:38

Câu 2: 

a) Để đồ thị hàm số \(y=\left(m+1\right)x^2\) đi qua điểm A(1;2) thì

Thay x=1 và y=2 vào hàm số \(y=\left(m+1\right)x^2\), ta được:

m+1=2

hay m=1

Vậy: m=1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 5 2019 lúc 7:54

Tập xác định: D = R

y′=0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đồng biến trên mỗi khoảng (-1; 0) và (1; + ∞ )

Hàm số nghịch biến trên mỗi khoảng (− ∞ ; −1); (0; 1)

Hàm số đạt cực đại tại x = 0; y CĐ  = 0

Hàm số đạt cực tiểu tại x = 1 hoặc x = -1;  y CT  = −2

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị có hai điểm uốn:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị cắt trục hoành tại

Hà Mi
Xem chi tiết