299+1
tính nhanh: (1/201+1/203+1/205+....+1/297+1/299)/(1/201*299+1/203*297+1/205*295+....+1/297*203+1/299*201).
Ta có: \(\frac{1}{201\times299}+\frac{1}{203\times297}+\cdots+\frac{1}{297\times203}+\frac{1}{299\times201}\)
\(=\frac{2}{201\times299}+\frac{2}{203\times297}+\cdots+\frac{2}{249\times251}\)
\(=\frac{2}{500}\times\left(\frac{500}{201\times299}+\frac{500}{203\times297}+\cdots+\frac{500}{249\times251}\right)\)
\(=\frac{1}{250}\times\left(\frac{1}{201}+\frac{1}{299}+\frac{1}{203}+\frac{1}{297}+\cdots+\frac{1}{249}+\frac{1}{251}\right)\)
\(=\frac{1}{250}\times\left(\frac{1}{201}+\frac{1}{203}+\cdots+\frac{1}{297}+\frac{1}{299}\right)\)
Ta có: \(\frac{\left(\frac{1}{201}+\frac{1}{203}+\cdots+\frac{1}{297}+\frac{1}{299}\right)}{\frac{1}{201\times299}+\frac{1}{203\times297}+\cdots+\frac{1}{297\times203}+\frac{1}{299\times201}}\)
\(=\frac{\left(\frac{1}{201}+\frac{1}{203}+\cdots+\frac{1}{297}+\frac{1}{299}\right)}{\frac{1}{250}\times\left(\left(\frac{1}{201}+\frac{1}{203}+\cdots+\frac{1}{297}+\frac{1}{299}\right)\right)}\)
\(=1:\frac{1}{250}=250\)
tính
M= 3/299 . (2 + 1/433) - 1/299 . 432/433 - 4/229.433
ghi cả cách làm
Tính (299 - 301)+(298 - 300)+(297 - 299)...+(1 - 3)
tích có cách, noi facebook, mình sẽ tick
( 299 - 301 ) + ( 298 - 300 ) + ( 297 - 299 ) + ( 1 - 3 )
= -2 + -2 + -2 + -2
= -8
ta co: (299-301)+(298-300)+(297-299)...+(1/3)
(tong tren co 299-1+1=299 so hang )
=(-2)+ (-2)+(-2)+(-2)+...+(-2) =(-2).299:2=(-299)
k nha
1/100+1/101+1/102+.......+1/299
–(-299) +203 -299
1+2+23+25+...+299+2101
\(A=2+2^3+...+2^{101}\)
\(4A=2^3+2^5+...+2^{101}+2^{103}\)
\(4A-A=2^{103}-2\)
\(3A=2^{103}-2\)
\(A=\dfrac{2^{103}-2}{3}\)
\(\Rightarrow1+2+2^3+...+2^{101}=A+1=\dfrac{2^{103}+1}{3}\)
[299/6+1/2]x50:2
`[` Tham Khảo `]`
`( 299/6 +1/2) xx 50 :2`
`= (299/6 + 3/6) xx 50 xx 1/2`
`= 302/6 xx 50 xx 1/2`
`=151/3 xx 50 xx 1/2`
`=7550/6`
`=3775/3`
1+1/2+1/22+1/24+1/26+...+1/298+1/299
Đặt :
\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{99}}\)
\(\Leftrightarrow2A=3+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{98}}\)
\(\Leftrightarrow2A-A=\left(3+\dfrac{1}{2}+....+\dfrac{1}{2^{98}}\right)-\left(1+\dfrac{1}{2}+....+\dfrac{1}{2^{99}}\right)\)
\(\Leftrightarrow A=2-\dfrac{1}{2^{99}}\)
Vậy..
\(\frac{1}{1\cdot300}+\frac{1}{2\cdot301}+\frac{1}{3\cdot302}+...+\frac{1}{299\cdot400}\)chứng minh rằng \(\frac{1}{299}\left(\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right)\)=\(\frac{1}{1\cdot300}+\frac{1}{2\cdot301}+\frac{1}{3\cdot302}+...+\frac{1}{299\cdot400}\)