Cho tam giác ABC có AM là trung tuyến. CMR: SABM=SACM.
Cho △ABC nhọn (AB < AC). Dựng AM là đường trung tuyến của tam giác ABC.
a) Chứng minh SABM = SACM
b) Chứng minh SABC = 2 SABM
a) Kẻ đường cao AH
Ta có: \(S_{ABM}=\dfrac{1}{2}.AH.BM;S_{ACM}=\dfrac{1}{2}.AH.CM\)
Mà BM = CM (do M là trung điểm của BC )
\(\Rightarrow S_{ABM}=S_{ACM}\)
b) Ta có: \(S_{ABC}=S_{ABM}+S_{ACM}=S_{ABM}+S_{ABM}=2S_{ABM}\)
a) Xét tam giác ABM và tam giác ACM có:
2 tam giác có chung chiều cao hạ từ A xuống BC
lại có MB=MC( AM đường trung tuyến)
⇒\(S_{ABM}=S_{ACM}\)(đpcm)
b) Xét tam giác ABM và tam giác ABC có:
2 tam giác có chung chiều cao hạ từ A xuống BC
lại có: \(MB=\dfrac{1}{2}BC\)( AM đường trung tuyến)
⇒ \(S_{ABM}=\dfrac{1}{2}S_{ABC}hay2S_{ABM}=S_{ABC}\left(đpcm\right)\)
Cho △ABC nhọn (AB < AC). Dựng AM là đường trung tuyến của tam giác ABC.
a) Chứng minh SABM = SACM
b) Chứng minh SABC = 2 SABM
a) Xét tam giác ABM và tam giác ACM có:
2 tam giác có chung chiều cao hạ từ A xuống BC
lại có MB=MC( AM đường trung tuyến)
⇒\(S_{ABM}=S_{ACM}\)(đpcm)
b) Xét tam giác ABM và tam giác ABC có:
2 tam giác có chung chiều cao hạ từ A xuống BC
lại có: \(MB=\dfrac{1}{2}BC\)( AM đường trung tuyến)
⇒ \(S_{ABM}=\dfrac{1}{2}S_{ABC}hay2S_{ABM}=S_{ABC}\left(đpcm\right)\)
Cho tam giác ABC, M trên cạnh BC. Chứng minh Sabm/Sacm = BM/CM.
Cho tam giác ABC vuông có AB= 6cm, AC= 8cm. Đường phân giác của góc A cắt cạnh BC tại D. Goih M, N theo thứ tự là hình chiêu của B và C trên đường thẳng AD
a, Chứng minh tam giác ABM= Tam giác ACN
b, Tính SABM/SACM
c, Chứng minh AM/AN=DM/DN
cho tam giác ABC có AM là trung tuyến vừa là phân giác góc BAC. CMR tam giác ABC cân tại A
Xét tam giác AMB và tam giác AMC có:
Góc BAM=Góc CAM(AM là đường phân giác góc BAC)
Chung AM
BM=CM(AM là đường trung tuyến góc BAC)
=>Tam giác AMB=Tam giác AMC.
=>AB=AC.
=>Tam giác ABC cân tại A(ĐPCM).
mk có cách khác:
vẽ MH vuông góc AB ; MK vuông góc AC
vì AM là trung tuyến vừa là p/giác của góc BAC
=> MH = MK
xét tam giác MHB và tam giác MKC có:
góc H = góc K = 900 cách vẽ)
MH = MK (cmt)
BM = CM (gt)
=> tam giác MHB = tam giác MKC ( ch-gn)
=> góc B = góc C
=> tam giác ABC cân tại A
cho tam giác ABC có AM là trung tuyến vừa là phân giác của góc BAC. CMR tam giác ABC cân tại A
Cho tam giác ABC có AM là trung tuyến, AM=AB. Cmr :
a, sinA=2sin(B-A)
b, cosC=3cotB
Đề bài sai, phản ví dụ:
Tam giác ABC vuông tại A với \(AB=1;AC=\sqrt{3};BC=2\)
Khi đó \(AM=\dfrac{1}{2}BC=1=AB\) thỏa mãn yêu cầu bài toán
Góc \(B=60^0;A=90^0\)
Khi đó: \(sinA=1\) trong khi \(2sin\left(B-A\right)=2sin\left(-30\right)=-1\)
Cho tam giác ABC. AM là trung tuyến và là đường cao. CMR : Tam giác ABC cân tại A
Xet ΔAMB vuông tại M và ΔAMC vuông tại M có
AM chung
MB=MC
=>ΔAMB=ΔAMC
=>AB=AC
=>ΔBAC cân tại A
Đáp án:
Giải thích các bước giải:
Xét ΔAMC và ΔAMB có:
AM : cạnh chung
= (=)
MC = MB ( Vì AM là đường trung tuyến)
=> ΔAMC = ΔAMB (c.g.c)
=> AC = AB ( 2 cạnh tương ứng)
=> Tam giác ABC cân tại A
Cho tam giác ABC, M thuộc BC
a) C/m: \(\frac{sABM}{sACM}\) = \(\frac{BM}{CM}\)
b) Trên đoạn AM lấy D. C/m: \(\frac{sABD}{sACD}\) = \(\frac{BM}{CM}\)
học đén tam giác đồng dạng chưa