2/ 2.4 + 2/ 4.6 + 2/ 6.8 + 2/ 8.10 + ....... + 2/ 50.52
A= 2.4+4.6+6.8+...+50.52
6A=2.4.6+4.6.(8-2)+.........+50.52.(54-48)
6A=2.4.6+4.6.8-2.4.6+............+50.52.54-48.50.52
6A=50.52.54
A=50.52.54:6
A=23400
so sánh biểu thức với 1 A= 2/1.3 - 2/2.4 + 2/3.5 - 2/4.6 + 2/5.7 - 2/6.8 + 2/7.9 - 2/8.10 + 2/9.11 - 2/10.12
Ta có \(A=\dfrac{2}{1.3}-\dfrac{2}{2.4}+\dfrac{2}{3.5}-\dfrac{2}{4.6}+\dfrac{2}{5.7}-\dfrac{2}{6.8}+\dfrac{2}{7.9}-\dfrac{2}{8.10}+\dfrac{2}{9.11}-\dfrac{2}{10.12}\)
\(\Rightarrow A=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}\right)-\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+\dfrac{2}{8.10}+\dfrac{2}{10.12}\right)\) \(\Rightarrow A=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\right)-\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{12}\right)\) \(\Rightarrow A=\left(1-\dfrac{1}{11}\right)-\left(\dfrac{1}{2}-\dfrac{1}{12}\right)\)
\(\Rightarrow A=1-\dfrac{1}{11}-\dfrac{1}{2}+\dfrac{1}{12}\)
\(\Rightarrow A=\dfrac{9}{22}+\dfrac{1}{12}\)
\(\Rightarrow A=\dfrac{65}{132}\)
Mà \(\dfrac{65}{132}< 1\) \(\Rightarrow A< 1\)
Vậy \(A< 1\)
2/2.4+2/4.6+....+2/50.52
\(\dfrac{2}{2.4}+\dfrac{2}{4.6}+................+\dfrac{2}{50.52}\)
\(=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+..............+\dfrac{1}{50}-\dfrac{1}{52}\)
\(=\dfrac{1}{2}-\dfrac{1}{52}=\dfrac{25}{52}\)
\(\dfrac{2}{2.4}+\dfrac{2}{4.6}+.....+\dfrac{2}{50.52}\)
\(=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+.....+\dfrac{1}{50}-\dfrac{1}{52}\)
\(=\dfrac{1}{2}-\dfrac{1}{52}=\dfrac{25}{52}\)
Rút gọn A =2.4+4.8+8.12+12.16+16.20/1.2+2.4+4.6+6.8+8.10
Xét tử: 2.4+4.8+8.12+12.16+16.20 = 2.1.2.2 + 2.2.2.4 + 2.2.4.6 + 2.2.6.8 + 2.2.8.10
= 2.2.(1.2+2.4+4.6+6.8+8.10)
=> 2.4+4.8+8.12+12.16+16.20/1.2+2.4+4.6+6.8+8.10 = 2.2.(1.2+2.4+4.6+6.8+8.10) / 1.2+2.4+4.6+6.8+8.10
= 2.2 = 4
tính 2.4+3.5+4.6+5.7+6.8+7.9+8.10+...+97.99+98.100
trong sách nâng cao và phát triển 6 đó bạn
B=\(\dfrac{1}{2.4}\)+\(\dfrac{1}{4.6}\)+\(\dfrac{1}{6.8}\)+\(\dfrac{1}{8.10}\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{10}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{10}\right)=\dfrac{1}{2}\cdot\dfrac{4}{10}=\dfrac{2}{10}=\dfrac{1}{5}\)
B = 4/2.4 + 4/4.6 +4/6.8 + 4/8.10 +... +4/16.18 + 4/18.20 = ?
2/2.4+2/4.6+2/6.8+...+2/98.100
\(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{98.100}\\ =\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{98}-\dfrac{1}{100}\\ =\dfrac{1}{2}-\dfrac{1}{100}\\ =\dfrac{49}{100}\)
\(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+....+\dfrac{2}{98.100}\)\(=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+....+\dfrac{1}{98}-\dfrac{1}{100}\)
\(=\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}\)
Rút gọn A=2.4+4.8+8.12+12.16+16.20/1.2+4.6+6.8+8.10 Vậy A=