Cho đa thức f(x) = x^2 + ax + b có nghiệm là 1 - căn 2.Tìm các số a,b (a, b là số hữu tỉ)
Cho đa thức \(f\left(x\right)=ax^2+bx+2020\) có các hệ số a,b là các số hữu tỉ và \(f\left(\sqrt{3}-1\right)=2021\). Tìm a,b và tính \(f\left(1+\sqrt{3}\right)\)
\(f\left(x\right)=ax^2+bx+2020\\ \Leftrightarrow f\left(\sqrt{3}-1\right)=a\left(4-2\sqrt{3}\right)+b\left(\sqrt{3}-1\right)+2020=2021\\ \Leftrightarrow4a-2a\sqrt{3}+b\sqrt{3}-b-1=0\\ \Leftrightarrow\left(4a-b-1\right)-\sqrt{3}\left(2a-b\right)=0\\ \Leftrightarrow4a-b-1=\sqrt{3}\left(2a-b\right)\)
Vì a,b hữu tỉ nên \(4a-b-1;2a-b\) hữu tỉ
Mà \(\sqrt{3}\) vô tỉ nên \(\sqrt{3}\left(2a-b\right)\) hữu tỉ khi \(2a-b=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a-b-1=0\\2a-b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\)
\(\Leftrightarrow f\left(1+\sqrt{3}\right)=\dfrac{1}{2}\left(4+2\sqrt{3}\right)+1+\sqrt{3}+2020=2023+2\sqrt{3}\)
cho đa thức f(x)=ax^2+bx+c sao cho f(1);f(4);f(9) là các số hữu tỉ. Chứng minh khi đó a,b,c là các số hữu tỉ
Cho đa thức f(x)=ax^4+bx^3+cx^2+dx+4a.a) Tìm quan hệ giữa các hệ số a và c;b và d của đa thức f(x) để f(x) có hai nghiệm là x=2 và x=-2. Thử lại với a=3;b=4;b) Với a=1;b=1.Hãy cho biết x=1 và x=-1 có phải là nghiệm đa thức vừa tìm?
a)cho đa thức f(x)=ax+b.Tìm điều kiện của a và b để f(7)=f(2)+f(3)
b) Tìm nghiệm của P(x)=(x-2).(2x+5)
c) Tìm hệ số a của P(x)= x^4+ax^2-4.
Biết rằng, đa thức này có 1 nghiệm là -2
a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)
dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.
tại sao a7 + b = 5a + 2b lại bằng 2a = b vậy ạ
a) Tìm số a để đa thức ax - 1/2 có nghiệm là x = 1/3
b) Xác định hệ số a,b của đa thức f (x) = ax + b biết f (1) = (-3) và f (2) = 7
a) Ta có a.1/3 - 1/2 = 0
=> a.1/3 = 1/2
=> a = 3/2
Vậy a = 3/2
b) Ta có : f(1) = a.1 + b = a + b = -3
=> a + b = -3 (1)
Lại có f(2) = a.2 + b = 2 x a + b = 7
=> 2 x a + b = 7 (2)
Khi đó 2 x a + b - (a + b) = 7 - (-3)
=> 2 x a - a = 10
=> a = 10
=> b = -13
Vậy a = 10 ; b = -13
a ) Ta có : \(a\cdot\frac{1}{3}-\frac{1}{2}=0\)
\(\Rightarrow a\cdot\frac{1}{3}=\frac{1}{2}\)
\(\Rightarrow a=\frac{3}{2}\)
Vậy \(a=\frac{3}{2}\)
b ) Ta có : \(f\left(1\right)=a\cdot1+b=a+b=-3\)
\(\Rightarrow a+b=-3\)(1)
Lại có : \(f\left(2\right)=a\cdot2+b=2\cdot a+b=7\)
\(\Rightarrow2\cdot a+b=7\)(2)
Khi đó : \(2\cdot a+b-\left(a+b\right)=7-\left(3\right)\)
\(\Rightarrow2\cdot a-a=10\)
\(\Rightarrow a=10;b=-13\)
Vậy ...
Cho đa thức f(x) = ax2 + bx + 2019 có hệ số a, b là các số hữu tỉ và \(f\left(1+\sqrt{2}\right)=2020.\)
Tìm a, b và tính \(f\left(1-\sqrt{2}\right)\)
f(x) = ax\(^2\)+bx + 2019
=> \(f\left(1+\sqrt{2}\right)=a\left(1+\sqrt{2}\right)^2+b\left(1+\sqrt{2}\right)+2019=2020\)
<=> \(a+2\sqrt{2}a+2a+b+\sqrt{2}b-1=0\)
<=> \(\left(3a+b-1\right)+\sqrt{2}\left(2a+b\right)=0\)(1)
Vì a, b là số hữu tỉ => 3a + b -1 ; 2a + b là số hữu tỉ khi đó:
(1) <=> \(\hept{\begin{cases}3a+b-1=0\\2a+b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=-2\end{cases}}\)
=> \(f\left(1-\sqrt{2}\right)=2020\)
Cho tam thức bậc hai f(x) = x^2 - 20x + 11.
a) Tìm tất cả các số hữu tỉ x sao cho căn f(x) là một số hữu tỉ.
b) Tìm tất cả các số nguyên dương x sao cho căn f(x) là một số nguyên dương.
Cho đa thức: f(x)= x^4-x^3-x^2+ax+b thỏa mãn khi chia f(x) lần lượt cho các đa thức x+1 và x-3 thì có dư tương ứng là -15 và 45. Hãy xác định các hệ số a, b và tìm tất cả các nghiệm của đa thức f(x)
\(f\left(x\right)\) chia \(x+1\) dư -15 \(\Rightarrow f\left(-1\right)=-15\Rightarrow-a+b=-16\)
\(f\left(x\right)\) chia \(x-3\) dư 45 \(\Rightarrow f\left(3\right)=45\Rightarrow3a+b=0\)
\(\Rightarrow\left\{{}\begin{matrix}-a+b=-16\\3a+b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-12\end{matrix}\right.\)
\(f\left(x\right)=x^4-x^3-x^2+4x-12=\left(x^2-4\right)\left(x^2-x+3\right)\)
\(f\left(x\right)=0\Leftrightarrow x^2-4=0\Rightarrow x=\pm2\)
tìm hai số hữu tỉ a và b sao cho phương trình x^3 - ax^2 + bx +8 = 0 có nghiệm là 1 + căn 3