Tìm x:
a) x+30%x = -1,3
b) |2x - 1| = (-4)2
Tìm x:
a, x(2x – 3) – 2(3 – 2x) = 0
b, (x – 3)(x2 + 3x + 9) – x(x + 2)(x – 2) = 1
c, 4x2 + 4x – 6 = 2
d, 2x2 + 7x + 3 = 0
\(a,\Leftrightarrow\left(2x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow x^3-27-x^3+4x=1\\ \Leftrightarrow4x=28\Leftrightarrow x=7\\ c,\Leftrightarrow4x^2-4x-8=0\\ \Leftrightarrow x^2-x-2=0\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ d,\Leftrightarrow2x^2+6x+x+3=0\\ \Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Tìm x:
a) 5x(4-x) + (5x^2-12)=x+6
b) (2x-7) . (5+4x) -8.(x^2-3x+5) = -30
\(a,\) \(5x\left(4-x\right)+\left(5x^2-12\right)=x+6\)
\(< =>20x-5x^2+5x^2-12-x-6=0\)
\(< =>19x-18=0\)
\(< =>x=\dfrac{18}{19}\)
\(b,\left(2x-7\right)\left(5+4x\right)-8\left(x^2-4x+5\right)=-30\)
\(< =>10x+8x^2-35-28x-8x^2+24x-40+30=0\)
\(< =>6x-45=0< =>x=\dfrac{45}{6}=7,5\)
a) \(5x\left(4-x\right)+\left(5x^2-12\right)=x+\Rightarrow6\\ \Leftrightarrow20x-5x^2+5x^2-12=x+6\\ \Leftrightarrow20x-12=x+6\\\Rightarrow20x-x=6+12\\ \Rightarrow19x=18\\ \Rightarrow x=\dfrac{18}{19}\)
b) \(\left(2x-7\right)\left(5+4x\right)-8\left(x^2-3x+5\right)=-30\\ \Rightarrow10x+8x^2-35-28x-8x^2+24x-40=-30\\ \Rightarrow6x-75=-30\\ \Rightarrow6x=45\\ \Rightarrow x=\dfrac{15}{2}\)
Tìm x:
a)5x(x-2)-2x+4=0
b)2x(x+1)-(x-2)^2=6
c)2x^2+7x-9=0
\(a,\Leftrightarrow\left(x-2\right)\left(5x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{2}{5}\end{matrix}\right.\\ b,\Leftrightarrow2x^2+2x-x^2+4x-4-6=0\\ \Leftrightarrow x^2+6x-10=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{19}\\x=-3-\sqrt{19}\end{matrix}\right.\\ c,\Leftrightarrow2x^2-2x+9x-9=0\\ \Leftrightarrow\left(2x+9\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{9}{2}\\x=1\end{matrix}\right.\)
Tìm x:
a) 4.(2-x)+x.(x+6)=x2
b) x.(x-7)-(x-2).(x+5)=0
c) (2x+3).(3-2x)+(2x-1)2=2
a: Ta có: \(4\left(2-x\right)+x\left(x+6\right)=x^2\)
\(\Leftrightarrow8-4x+x^2+6x-x^2=0\)
\(\Leftrightarrow2x=-8\)
hay x=-4
b: Ta có: \(x\left(x-7\right)-\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow x^2-7x-x^2-3x+10=0\)
\(\Leftrightarrow-10x=-10\)
hay x=1
c: Ta có: \(\left(2x+3\right)\left(3-2x\right)+\left(2x-1\right)^2=2\)
\(\Leftrightarrow9-4x^2+4x^2-4x+1=2\)
\(\Leftrightarrow-4x=-8\)
hay x=2
Tìm x:
a) x(2-x)+(x2+x)=7
b) (2x+1)2-x(4-5x)=17
c) (4-x)2-(2x+1)2=0
d) (2x3-8x2+10x) : (2x)=0
e) (4x4-16x-48) : (-2x)2=0
a: Ta có: \(x\left(2-x\right)+\left(x^2+x\right)=7\)
\(\Leftrightarrow2x-x^2+x^2+x=7\)
\(\Leftrightarrow3x=7\)
hay \(x=\dfrac{7}{3}\)
b: Ta có: \(\left(2x+1\right)^2-x\left(4-5x\right)=17\)
\(\Leftrightarrow4x^2+4x+1-4x+5x^2=17\)
\(\Leftrightarrow9x^2=16\)
\(\Leftrightarrow x^2=\dfrac{16}{9}\)
hay \(x\in\left\{\dfrac{4}{3};-\dfrac{4}{3}\right\}\)
c: Ta có: \(\left(x-4\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(x-4-2x-1\right)\left(x-4+2x+1\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
d: ta có: \(\dfrac{2x^3-8x^2+10x}{2x}=0\)
\(\Leftrightarrow x^2-4x+5=0\)
\(\Leftrightarrow\left(x-2\right)^2+1=0\)(vô lý)
Tìm x:
a,| 4 + 2x| = -4x
b,|3x - 1|+ 2 = x
c, |x + 15 | + 1 = 3x
d,| 2x - 5| = x + 2
Tìm x:
a) x(2-x)+(x2+x)=7
b) (4-x)2-(2x+1)2=0
c) (4x4-16x-48) : (-2x)2=0
a: Ta có: \(x\left(2-x\right)+x^2+x=7\)
\(\Leftrightarrow2x-x^2+x^2+x=7\)
\(\Leftrightarrow3x=7\)
hay \(x=\dfrac{7}{3}\)
b: Ta có: \(\left(x-4\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(x-4-2x-1\right)\left(x-4+2x+1\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(3x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
Tìm x:
a)2x3-18x=0
b)(3x-2).(2x+1)-6x.(x+2)=11
c)(x-1)3-(x+2).(x2-2x+4)=3.(1-x2)
a: Ta có: \(2x^3-18x=0\)
\(\Leftrightarrow2x\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
b: Ta có: \(\left(3x-2\right)\left(2x+1\right)-6x\left(x+2\right)=11\)
\(\Leftrightarrow6x^2+3x-4x-2-6x^2-12x=11\)
\(\Leftrightarrow-13x=13\)
hay x=-1
c: Ta có: \(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)=3\left(1-x^2\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3-8=3-3x^2\)
\(\Leftrightarrow3x=12\)
hay x=4
a) 2x3-18x=0
⇔ 2x(x2-9)=0
⇔ 2x(x-3)(x+3)=0
⇔ \(\left\{{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
b)(3x-1)(2x+1)-6x(x+2)=11
⇔ 6x2+x-1-6x2-12x=11
⇔ -11x=12
\(\Leftrightarrow x=-\dfrac{12}{11}\)
c) (x-1)3-(x+2).(x2-2x+4)=3.(1-x2)
⇔ x3-3x2+3x-1-x3-8-3+3x2=0
⇔ 3x=12
⇔ x=4
c. (x - 1)3 - (x + 2)(x2 - 2x + 4) = 3(1 - x2)
<=> (x3 - 3x2 + 3x - 1) - (x3 - 2x2 + 4x + 2x2 - 4x + 8) = 3 - 3x2
<=> x3 - 3x2 + 3x - 1 - x3 + 2x2 - 4x - 2x2 + 4x - 8 = 3 - 3x2
<=> x3 - x3 - 3x2 + 2x2 - 2x2 + 3x2 + 3x - 4x + 4x = 3 + 1 + 8
<=> 3x = 12
<=> x = 4
Tìm x:
a. \(\sqrt{9x^2}=2x+1\)
b. \(\sqrt{x^2+6x+9}=3x-1\)
c. \(\sqrt{x^2-2x+4}=2x-3\)
\(a,\sqrt{9x^2}=2x+1\\ \Leftrightarrow\left[{}\begin{matrix}3x=2x+1,\forall x\ge0\\-3x=2x+1,\forall x< 0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1,\forall x\ge0\left(N\right)\\x=-1,\forall x< 0\left(N\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
\(b,\sqrt{x^2+6x+9}=3x-1\\ \Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\\ \Leftrightarrow\left[{}\begin{matrix}x+3=3x-1,\forall x+3\ge0\\x+3=1-3x,\forall x+3< 0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2,\forall x\ge-3\left(N\right)\\x=-\dfrac{1}{2},\forall x< -3\left(L\right)\end{matrix}\right.\Leftrightarrow x=2\)
\(c,\sqrt{x^2-2x+4}=2x-3\left(x\in R\right)\\ \Leftrightarrow x^2-2x+4=\left(2x-3\right)^2\\ \Leftrightarrow x^2-2x+4=4x^2-12x+9\\ \Leftrightarrow3x^2-10x+5=0\\ \Delta=100-4\cdot3\cdot5=40\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{10-\sqrt{40}}{6}\\x=\dfrac{10+\sqrt{40}}{6}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5-\sqrt{10}}{3}\\x=\dfrac{5+\sqrt{10}}{3}\end{matrix}\right.\)
\(a.\sqrt{9x^2}=2x+1\)
<=> \(\sqrt{9}x=2x+1\)
<=> 3x = 2x + 1
<=> 3x - 2x = 1
<=> x = 1
Tìm x:
a) (2x - 1) (x^2 - x + 1) = 2x^3 - 3x^2 + 2
b) (x + 1) (x^2 + 2x + 4) - x^3 - 3x^2 + 16 = 0
c) (x + 1) (x + 2) (x + 5) - x^3 - 8x^2 = 27
a) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)
\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1-2x^3+3x^2-2=0\)
\(\Leftrightarrow3x=3\)
hay x=1
Vậy: S={1}
b) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)
\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)
\(\Leftrightarrow6x=-20\)
hay \(x=-\dfrac{10}{3}\)
c) Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2-27=0\)
\(\Leftrightarrow x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2-27=0\)
\(\Leftrightarrow17x=17\)
hay x=1