Tìm các số nguyên thỏa mãn: 9x2 - 6x = y3
Tìm các số nguyên dương thỏa mãn x3 - y3 = 133(x2 + y2)
Tìm các cặp số nguyên dương thỏa mãn 6x + 5y + 18 = 2xy
\(6x+5y+18=2xy\\ \Leftrightarrow2xy-6x+15-5y=33\\ \Leftrightarrow2x\left(y-3\right)-5\left(y-3\right)=33\\ \Leftrightarrow\left(2x-5\right)\left(y-3\right)=33\)
Ta có:
\(2x-5\) | ±33 | ±1 | ±3 | ±11 |
\(y-3\) | ±1 | ±33 | ±11 | ±3 |
\(x\) | 19;-14 | 3;2 | 4;1 | 8;-3 |
\(y\) | 4;2 | 36;-30 | 14;-8 | 6;0 |
Vậy \(\left(x;y\right)=\left\{\left(19;4\right);\left(-14;2\right);\left(3;36\right);\left(2;-30\right);\left(4;14\right);\left(1;-8\right);\left(8;6\right);\left(-3;0\right)\right\}\)
Tìm các số nguyên x,y thỏa mãn: \(6x^2-5y^2=74\)
6x^2 - 5y^2 = 74
<=> 6(x^2 - 4) = 5(10 - y^2)
--> 6(x^2 - 4) chia hết cho 5. Mà ƯCLN(6; 5) = 1
--> x^2 - 4 chia hết cho 5
Đặt x^2 = 5k + 4 (k tự nhiên)
--> y^2 = 10 - 6k
Do x^2, y^2 > 0 nên 5k + 4, 10 - 6k > 0 --> -4/5 < k < 5/3
--> k = 0 hoặc k = 1
TH1: k = 0 --> y = sqrt(10) (loại)
TH2: k = 1
--> (x; y) = (-3; -2); (3; 2) (thỏa)
6x^2 +5y^2 =74
(1) 6x2≥0 ⇒ 5y2≤74 ⇔
y2≤745<15 ⇔ y2≤14
⇒y ={±3;±2;±1;0} 6x2≥0 ⇒5y2 ≤74⇔ y2≤745<15⇔ y2≤14 ⇒y={±3;±2;±1;0}
(2)x;y thuộc Z => 6x^2 luôn là số chẵn => y phải chẵn
(3) 6x^2 luôn chia hết cho 3 (74=7+4=11) không chia hết cho 3
=> y không chia hết cho 3
từ (1) (2) và (3) => y=±2y=±2
⇔6x2=74−5.4=54⇔x2=9;x=±3⇔6x2=74−5.4=54⇔x2=9;x=±3
(x;y)=(±3;±2)
6x^2 - 5y^2 = 74
<=> 6(x^2 - 4) = 5(10 - y^2)
--> 6(x^2 - 4) chia hết cho 5. Mà ƯCLN(6; 5) = 1
--> x^2 - 4 chia hết cho 5
Đặt x^2 = 5k + 4 (k tự nhiên)
--> y^2 = 10 - 6k
Do x^2, y^2 > 0 nên 5k + 4, 10 - 6k > 0 --> -4/5 < k < 5/3
--> k = 0 hoặc k = 1
TH1: k = 0 --> y = sqrt(10) (loại)
TH2: k = 1
--> (x; y) = (-3; -2); (3; 2) (thỏa)
Tìm các cặp số nguyên dương (x; y) thỏa mãn 6x + 5y +18 = 2xy
\(\Leftrightarrow2xy-6x-5y=18\)
\(\Leftrightarrow2x\left(y-3\right)-5\left(y-3\right)=33\)
\(\Leftrightarrow\left(2x-5\right)\left(y-3\right)=33\)
Phương trình ước số cơ bản
Tìm các số nguyên x,y,z thỏa mãn:6x+15y+10z=3
tìm các cặp số (x,y) nguyên thỏa mãn 9x^2 + 6x=y^3
Tìm các cặp số nguyên dương (x;y) thỏa mãn: 6x+5y+18=2xy
Ta có: \(6x+5y+18=2xy\)
\(\Leftrightarrow6x+5y-2xy=-18\)
\(\Leftrightarrow2x\left(3-y\right)+5y=-18\)
\(\Leftrightarrow2x\left(3-y\right)+5y-15=-18-15\)
\(\Leftrightarrow2x\left(3-y\right)+5\left(y-3\right)=-33\)
\(\Leftrightarrow2x\left(3-y\right)-5\left(3-y\right)=-33\)
\(\Leftrightarrow\left(3-y\right)\left(2x-5\right)=-33\)
Dễ rồi
Tìm các cặp số nguyên x, y thỏa mãn : -3xy + 4y - 6x =27
Câu hỏi của kalista - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo!
-3xy+4y-6x=27
-3xy+4y-(6x+8)=19
y(4-3x)-2(4-3x)=19
(y-2)(4-3x)=19
Vì y;x là số nguyên => y-2;4-3x là số nguyên
=> y-2;4-3x ∈ Ư(19)
Ta có bảng:
y-2 | 1 | 19 | -1 | -19 |
4-3x | 19 | 1 | -19 | -1 |
x | 3 | 21 | 1 | -17 |
y | -5 | 1 | 11 | 5/3 (loại) |
Vậy cặp số nguyên (y;x) thỏa mãn là: (3;-5) ; (21;1) ; (1;11) .
Tìm các cặp số nguyên dương (x; y) thỏa mãn: 2xy - 6x = 17+5(y-3)