(x^2y^2 -1/2 xy +2y)(x-2y)
g)(x+3y)(x-3y+2) h)(x+2y((x-2y+3) I)(x^2-xy+y^2)(x+y) J)(x^2-xy+y^2)(x+y) K)(5x-2y)(x^2-xy-1) L)(x^2y^2-xy+y)(x-y)
g: (x+3y)(x-3y+2)
=(x+3y)(x-3y)+2(x+3y)
=x^2-9y^2+2x+6y
h: (x+2y)(x-2y+3)
=(x+2y)(x-2y)+3(x+2y)
=x^2-4y^2+3x+6y
i: (x^2-xy+y^2)(x+y)
=x^3+x^2y-x^2y-xy^2+xy^2+y^3
=x^3+y^3
j: (x+y)(x^2-xy+y^2)=x^3+y^3
k: (5x-2y)(x^2-xy-1)
=5x*x^2-5x*xy-5x-2y*x^2+2y*xy+2y
=5x^3-5x^2y-5x-2x^2y+2xy^2+2y
=5x^3-7x^2y+2xy^2-5x+2y
l: (x^2y^2-xy+y)(x-y)
=x^3y^2-x^2y^3-x^2y^2+xy^2+xy-y^2
a) \(x^6+x^2y^5+xy^6+x^2y^5-xy^6\)
b) \(\dfrac{1}{2}x^2y^3-x^2y^3+3x^2y^2z^2-z^4-3x^2y^2z^2\)
a) x6+x2y5+xy6+x2y5-xy6
= x6+(x2y5+x2y5)+(xy6-xy6)
= x6+2x2y5
b) \(\dfrac{1}{2}\)x2y3-x2y3+3x2y2z2-z4-3x2y2z2
= (\(\dfrac{1}{2}\)x2y3-x2y3)+(3x2y2z2-3x2y2z2)-z4
= -\(\dfrac{1}{2}\)x2y3-z4
tim cac da thuc dong dang 5/3x^2y, (xy^2), 2xy^2, 2x^2y, 1/4xy^2, x^2y, x^2y, -1/2x^2y, -2/5x^2y, -4xy^2
2xy.(3x^2y-4xy^2)-1/2x^2y^2.(12x-16y)+xy.(3-13xy)+13.(x^2y^2-1)
1/Ghpt\(\left\{{}\begin{matrix}x^2+y^2+x^2y^2=1+2xy\\\left(x-y\right)\left(1+xy\right)=1-xy\end{matrix}\right.\)
2/Ghpt\(\left\{{}\begin{matrix}x^2y+y+xy^2+x=18xy\\x^4y^2+y^2+x^2y^4+x^2=208x^2y^2\end{matrix}\right.\)
3/Ghpt\(\left\{{}\begin{matrix}\sqrt{x+3}+\sqrt{y+3}=4\\\dfrac{1}{x}+\dfrac{1}{y}=2\end{matrix}\right.\)
4/ Cho x,y là nghiệm của hệ phương trình
\(\left\{{}\begin{matrix}x+y=m\\x^2+y^2=2m\end{matrix}\right.\)
Tìm min và max của A=xy
5/cho x,y,z thỏa mãn đk
\(\left\{{}\begin{matrix}xy+yz+xz=1\\x^2+y^2+z^2=2\end{matrix}\right.\)
Chứng minh rằng: \(\dfrac{-4}{3}\le x,y,z\le\dfrac{4}{3}\)
6/Ghpt bằng 3 cách\(\left\{{}\begin{matrix}x+y+z=1\\\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\)
7/Ghpt\(\left\{{}\begin{matrix}x^3+1=2y\\y^3+1=2x\end{matrix}\right.\)
8/Ghpt\(\left\{{}\begin{matrix}x^2-3y=-2\\y^2-3x=-2\end{matrix}\right.\)
9/Ghpt bằng 2 cách\(\left\{{}\begin{matrix}x+\sqrt{y+3}=3\\y+\sqrt{x+3}=3\end{matrix}\right.\)
10/Ghpt\(\left\{{}\begin{matrix}x+\dfrac{2}{y}=\dfrac{3}{x}\\y+\dfrac{2}{x}=\dfrac{3}{y}\end{matrix}\right.\)
11/Ghpt\(\left\{{}\begin{matrix}\sqrt[3]{3x+5}=y+1\\\sqrt[3]{3y+5}=x+1\end{matrix}\right.\)
12/Ghpt\(\left\{{}\begin{matrix}3x^2y-y^2-2=0\\3y^2x-x^2-2=0\end{matrix}\right.\)
13/Giải các phương trình sau bằng cách đứa về hệ pt đối xứng loại II:
a)\(\left(x^2-3\right)^2-x-3=0\)
b)\(x^2-2=\sqrt{x+2}\)
14/Ghpt:\(\left\{{}\begin{matrix}x^2+y^2+xy=3\\x^2-y^2+xy=1\end{matrix}\right.\)
Tìm các đa thức P, Q và R biết a) P+(x^2-2xy+y^2)=5x^2+3xy-2y^2 b) Q-(xy+x^2-2y^2)=-x^2+y^2 c) (5x^2y-4xy^2+xy)-R=xy-x^2y+x^2y^2
Bài 1: Tính giá trị biểu thức sau: a) B=3x^3-2y^3-6x^2y^2+xy tại x=2/3, y=1/2 b) C=2x+xy^2-x^2y-2y tại x=-1/2, y=-1/3
a)B=3x3 -2y3-6x2y2+xy
B=(3x3-6x2y2)+(xy-2y3)
B=3x2(x-2y2)+y(x-2y2)
B=(x-2y2)(3x2+y)
tại x=\(\frac{2}{3}\)và y=\(\frac{1}{2}\)ta có B=(x-2y2)(3x2+y)=(\(\frac{2}{3}\)-2*\(\frac{1}{2}\)^2 )(3*\(\frac{2}{3}\)^2+\(\frac{1}{2}\))=\(\frac{1}{6}\)*\(\frac{11}{6}\)=\(\frac{11}{36}\)
b)C= 2x+xy2-x2y-2y
C=(2x-2y)+(xy2-x2y)
C=2(x-y)-xy(x-y)
C=(2-xy)(x-y)
tại x=\(-\frac{1}{2}\)và y=\(-\frac{1}{3}\)ta có C=(2-xy)(x-y)=(2-\(-\frac{1}{2}\)*\(-\frac{1}{3}\))(\(-\frac{1}{2}\)+\(\frac{1}{3}\))=\(\frac{-11}{36}\)
a)(3x^2-4)(x+3y) b)(c+3)(x^2+3x) c)(xy-1)(xy+5) d)(3x+5y)(2x-7y) e)-(x-1)(-x^2+2y) f)(-x^2+2y)(x^2+2y)
a: (3x^2-4)(x+3y)
=3x^2*x+3x^2*3y-4x-4*3y
=3x^3+9x^2y-4x-12y
b: (c+3)(x^2+3x)
=c*x^2+c*3x+3x^2+9x
=cx^2+3cx+3x^2+9x
c: (xy-1)(xy+5)
=xy*xy+5xy-xy-5
=x^2y^2+4xy-5
d: (3x+5y)(2x-7y)
=3x*2x-3x*7y+5y*2x-5y*7y
=6x^2-21xy+10xy-35y^2
=6x^2-11xy-35y^2
e: -(x-1)(-x^2+2y)
=(x-1)(x^2-2y)
=x^3-2xy-x^2+2y
f: (-x^2+2y)(x^2+2y)
=(2y)^2-x^4
=4y^2-x^4
cho 2 số thực `x,y` thỏa mãn `x>0,y>2,x`\(\ne\)`2y`. CMR: \(\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\right)\left(2x^2+y+2\right):\dfrac{x^4+4x^2y^2+y^4-4}{x^2+y+xy+x}=\dfrac{x+1}{2y-x}\)
Đề bài sai, đề đúng thì phân thức đằng sau dấu chia phải là:
\(\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
a, x^2 +2xy^2+y^3/ 2x^2 +xy -y^2=xy+x^2/2x-y
b, x^2 + 3xy +2y^2 /x^3 +2x^2y-xy^2 -2y^3= 1/2x-7