Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thị Hồ Lê
Xem chi tiết
Ichigo Kurosaki
3 tháng 4 2016 lúc 19:46

1/2 lớn hơn

Nguyễn Tú Hà
Xem chi tiết
HT.Phong (9A5)
22 tháng 6 2023 lúc 10:13

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)

\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)

duc_1412_gioiok
Xem chi tiết
Nguyễn Anh Quân
23 tháng 11 2017 lúc 20:10

Tổng trên = (31+32012).[(32012-31:1+1] : 2 = 32043 . 31982 : 2 = 42043 . 15991 lẻ

=> tổng trên ko chia hết cho 120

k mk nha

duc_1412_gioiok
23 tháng 11 2017 lúc 20:40

đề sai 

Son Goku
8 tháng 3 2018 lúc 21:54

Tổng trên có ​31982 số hạng

​Nên tổng trên bằng:(32012+31).31982/2

​=32043.15991 là số lẻ ko chia hết cho 120

​Tk mình nha bn !

Phạm Ngọc Thảo Nguyên
Xem chi tiết
Lê Minh Long
29 tháng 12 2016 lúc 22:01

tích tao nhé ahihi

Lê Minh Long
29 tháng 12 2016 lúc 22:00

không chia hết cho 120 vì tổng trên là số lẻ nên không chia hết cho một số chẵn

Phạm Ngọc Thảo Nguyên
30 tháng 12 2016 lúc 9:01

còn 1 cách nào khác hok bạn? mik hok hỉu một chút

hoàng thăng hậu
Xem chi tiết
ILoveMath
16 tháng 12 2021 lúc 22:21

\(A=1+3+3^2+3^3+...+3^{102}+3^{103}\)

\(\Rightarrow A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{102}+3^{103}\right)\)

\(\Rightarrow A=\left(1+3\right)+3^2\left(1+3\right)+...+3^{102}\left(1+3\right)\)

\(\Rightarrow A=\left(1+3\right)\left(1+3^2+...+3^{102}\right)\)

\(\Rightarrow A=4\left(1+3^2+...+3^{102}\right)⋮4\)

Trần Ngọc Hà
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 11 2021 lúc 15:27

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{89}+3^{90}\right)\\ A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{89}\left(1+3\right)\\ A=3\cdot4+3^3\cdot4+...+3^{89}\cdot4\\ A=4\left(3+3^3+...+3^{89}\right)⋮4\)

lê thục đan
24 tháng 11 2021 lúc 15:53

A = ( 3 + 3 2 ) + ( 3 3 + 3 4 ) + . . . + ( 3 89 + 3 90 )

A = 3 ( 1 + 3 ) + 3 3 ( 1 + 3 ) + . . . + 3 89 ( 1 + 3 )

A = 3 ⋅ 4 + 3 3 ⋅ 4 + . . . + 3 89 ⋅ 4

A = 4 ( 3 + 3 3 + . . . + 3 89 ) ⋮ 4

Phan Lâm Thanh Trúc
Xem chi tiết
Kiều Vũ Linh
23 tháng 12 2023 lúc 12:07

A = 8⁸ + 2²⁰

= (2³)⁸ + 2²⁰

= 2²⁴ + 2²⁰

= 2²⁰.(2⁴ + 1)

= 2²⁰.17 ⋮ 17

Vậy A ⋮ 17

Nguyễn Việt Hà
Xem chi tiết
Ng Ngọc
14 tháng 8 2023 lúc 22:20

1.

a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(2A=2+2^2+2^3+....+2^{2008}\)

b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)

\(=2^{2008}-1\) (bạn xem lại đề)

 

2.

\(A=1+3+3^1+3^2+...+3^7\)

a. \(2A=2+2.3+2.3^2+...+2.3^7\)

b.\(3A=3+3^2+3^3+...+3^8\)

\(2A=3^8-1\)

\(=>A=\dfrac{2^8-1}{2}\)

 

3

.\(B=1+3+3^2+..+3^{2006}\)

a. \(3B=3+3^2+3^3+...+3^{2007}\)

b. \(3B-B=2^{2007}-1\)

\(B=\dfrac{2^{2007}-1}{2}\)

 

4.

Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)

a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)

b.\(4C-C=4^7-1\)

\(C=\dfrac{4^7-1}{3}\)

 

5.

\(S=1+2+2^2+2^3+...+2^{2017}\)

\(2S=2+2^2+2^3+2^4+...+2^{2018}\)

\(S=2^{2018}-1\)

Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 22:09

4:

a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6

=>4*C=4+4^2+...+4^7

b: 4*C=4+4^2+...+4^7

C=1+4+...+4^6

=>3C=4^7-1

=>\(C=\dfrac{4^7-1}{3}\)

5:

2S=2+2^2+2^3+...+2^2018

=>2S-S=2^2018-1

=>S=2^2018-1

Lê Phạm Bảo Hân
Xem chi tiết
Akai Haruma
31 tháng 12 2023 lúc 14:40

Câu 1: 

$A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+....+(2^{2019}+2^{2020})$

$=2(1+2)+2^3(1+2)+2^5(1+2)+....+2^{2019}(1+2)$

$=(1+2)(2+2^3+2^5+...+2^{2019})=3(2+2^3+2^5+...+2^{2019})\vdots 3$

-----------------

$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{2018}+2^{2019}+2^{2020})$

$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{2018}(1+2+2^2)$

$=2+(1+2+2^2)(2^2+2^5+....+2^{2018})$

$=2+7(2^2+2^5+...+2^{2018})$

$\Rightarrow A$ chia $7$ dư $2$.

Akai Haruma
31 tháng 12 2023 lúc 14:41

Câu 2:

$B=(3+3^2)+(3^3+3^4)+....+(3^{2021}+3^{2022})$
$=3(1+3)+3^3(1+3)+...+3^{2021}(1+3)$

$=(1+3)(3+3^3+...+3^{2021})=4(3+3^3+....+3^{2021})\vdots 4$

-------------------

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{2020}+3^{2021}+3^{2022})$

$=3(1+3+3^2)+3^4(1+3+3^2)+....+3^{2020}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+...+3^{2020})=13(3+3^4+...+3^{2020})\vdots 13$ (đpcm)

Huyo
Xem chi tiết
Lương Thị Vân Anh
14 tháng 4 2023 lúc 12:21

Ta có M = 3 + 32 + 33 + 34 + ... + 318

              = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 317 + 318 )

              = 3( 1 + 3 ) + 33( 1 + 3 ) + ... + 317( 1 + 3 )

              = 3 . 4 + 33 . 4 + ... + 317 . 4

              = 4( 3 + 33 + ... + 317 ) ⋮ 4

Vậy M ⋮ 4

Lại có M = 3 + 32 + 33 + 34 + ... + 318 

               = ( 3 + 32 + 33 ) + ( 34 + 3+ 36 ) + ... + ( 316 + 317 + 318 )

               = 3( 1 + 3 + 32 ) + 34( 1 + 3 + 32 ) + ... + 317( 1 + 3 + 32 ) 

               = 3 . 13 + 34 . 13 + ... + 317 . 13

               = 13( 3 + 3+ ... + 317 ) ⋮ 13

Vậy M ⋮ 4 và 13