Tìm giá trị của x:
\(\sqrt{5x-1}-\sqrt{x+2}=\dfrac{4x-3}{5}\)
Tìm giá trị nhỏ nhất của biểu thức:
a) A = \(\sqrt{4x^2+4x+2}\)
b) B = \(\sqrt{2x^2-4x+5}\)
c) C = \(\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\)
d) D = \(x-2\sqrt{x+2}\)
a,\(A=2\sqrt{x^2+x+\dfrac{1}{2}}=2\sqrt{x^2+x+\dfrac{1}{4}+\dfrac{1}{4}}=2\sqrt{\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{4}}\)
\(=\sqrt{4\left(x+\dfrac{1}{2}\right)^2+1}\ge1\) dấu"=" xảy ra<=>x=-1/2
\(B=\sqrt{2\left(x^2-2x+\dfrac{5}{2}\right)}=\sqrt{2\left[x^2-2x+1+\dfrac{3}{2}\right]}\)
\(=\sqrt{2\left(x-1\right)^2+3}\ge\sqrt{3}\) dấu"=" xảy ra<=>x=1
\(C=\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\ge\dfrac{-2}{-\sqrt{2}}=\sqrt{2}\) dấu"=" xảy ra<=>x=1
\(D=x-2\sqrt{x+2}\ge-2\) dấu"=" xảy ra<=>x=-2
d)D=\(x-2\sqrt{x+2}=\left(x+2\right)-2\sqrt{x+2}+1-3\)
\(=\left(\sqrt{x+2}-1\right)^2-3\ge-3\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x+2=1\Leftrightarrow x=-1\)
Với giá trị nào của x thì các căn thức sau có nghĩa:
a, \(\sqrt{5x-10}\)
b, \(\sqrt{x^2-3x+2}\)
c, \(\sqrt{\dfrac{x+3}{5-x}}\)
d, \(\sqrt{x^2+4x-4}\)
a) ĐKXĐ: \(x\ge2\)
b) ĐKXĐ: \(\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)
c) ĐKXĐ: \(\dfrac{x+3}{5-x}\ge0\)
\(\Leftrightarrow\dfrac{x+3}{x-5}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3\ge0\\x-5< 0\end{matrix}\right.\Leftrightarrow-3\le x< 5\)
Cho \(B=2\left(4x^5+4x^4-5x^3+2x-2\right)^{2021}+2022\) Tính giá trị của B tại \(x=\dfrac{-1-\sqrt{5}}{2}\)
* Giải phương trình
a. \(x^2-2\sqrt{5x}+5=0\)
b. \(\sqrt{x+3}=1\)
* Cho:
A=\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\) , với x>0 và x≠1
a. Rút gọn A
b. Tìm giá trị nhỏ nhất của A
Bài 1:
a: Ta có: \(x^2-2\sqrt{5}x+5=0\)
\(\Leftrightarrow x-\sqrt{5}=0\)
hay \(x=\sqrt{5}\)
b: Ta có: \(\sqrt{x+3}=1\)
\(\Leftrightarrow x+3=1\)
hay x=-2
1. Tìm x là số chính phương để P nhận giá trị nguyên:
\(P=\dfrac{5-3\sqrt{x}}{\sqrt{x}-1}\)
2. Tìm GTLN của bthức sau:
\(C=\dfrac{2022}{3x^2-5x+1}\)
1) \(P=\dfrac{5-3\sqrt{x}}{\sqrt{x}-1}\left(đk:x\ge0,x\ne1\right)\)
\(=\dfrac{-3\left(\sqrt{x}-1\right)+2}{\sqrt{x}-1}=-3+\dfrac{2}{\sqrt{x}-1}\in Z\)
\(\Rightarrow\sqrt{x}-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Do \(x\ge0,x\ne1\) và x là số chính phương
\(\Rightarrow x\in\left\{0;4;9\right\}\)
2) \(3x^2-5x+1=3\left(x^2-\dfrac{5}{3}x+\dfrac{25}{36}\right)-\dfrac{13}{12}=3\left(x-\dfrac{5}{6}\right)^2-\dfrac{13}{12}\ge-\dfrac{13}{12}\)
\(\Rightarrow C=\dfrac{2022}{3x^2-5x+1}\le2022:\left(-\dfrac{13}{12}\right)=-\dfrac{24264}{13}\)
\(minC=-\dfrac{24624}{13}\Leftrightarrow x=\dfrac{5}{6}\)
1) Tính giá trị của biểu thức : A= 3\(\sqrt{\dfrac{1}{3}}\) - \(\dfrac{5}{2}\)\(\sqrt{12}\) - \(\sqrt{48}\)
2) Tìm x để biểu thức sau có nghĩa : A=\(\sqrt{12-4x}\)
3) Rút gọn biểu thức : P= \(\dfrac{2x-2\sqrt{x}}{x-1}\) với x≥0 và x ≠1
1) \(A=3\sqrt{\dfrac{1}{3}}-\dfrac{5}{2}\sqrt{12}-\sqrt{48}\)
\(=3\cdot\dfrac{\sqrt{1}}{\sqrt{3}}-\dfrac{5\sqrt{12}}{2}-\sqrt{4^2\cdot3}\)
\(=\dfrac{3\cdot1}{\sqrt{3}}-\dfrac{5\cdot2\sqrt{3}}{2}-4\sqrt{3}\)
\(=\sqrt{3}-5\sqrt{3}-4\sqrt{3}\)
\(=-8\sqrt{3}\)
2) \(A=\sqrt{12-4x}\) có nghĩa khi:
\(12-4x\ge0\)
\(\Leftrightarrow4x\le12\)
\(\Leftrightarrow x\le\dfrac{12}{4}\)
\(\Leftrightarrow x\le3\)
3) \(\dfrac{2x-2\sqrt{x}}{x-1}\)
\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}-2\sqrt{x}}{\left(\sqrt{x}\right)^2-1^2}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2\sqrt{\text{x}}}{\sqrt{x}+1}\)
Tính giá trị biểu thức
A= \(\left(4x^5+4x^4-5x^3+2x-2\right)^2+2020\) khi \(x=\dfrac{\sqrt{5}-1}{2}\)
Lời giải:
$x=\frac{\sqrt{5}-1}{2}$
$2x=\sqrt{5}-1$
$2x+1=\sqrt{5}\Rightarrow (2x+1)^2=5$
$\Leftrightarrow 4x^2+4x-4=0$
$\Leftrightarrow x^2+x-1=0$
Khi đó:
\((4x^5+4x^4-5x^3+2x-2)^2\)
\(=[4x^3(x^2+x-1)-x^3+2x-2]^2\)
\(=(-x^3+2x-2)^2=[-x(x^2+x+1)+(x^2+x-1)-1]^2\)
\(=(-1)^2=1\)
Cho hai biểu thức \(A=\dfrac{2\sqrt{x}+3}{5x-10\sqrt{x}}\) và \(B=\dfrac{2}{\sqrt{x}-2}+\dfrac{3}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\) với x>0, x≠4. Tìm x sao cho \(\dfrac{B}{A}\)nhận giá trị là một số nguyên.
Cho \(x=\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\).
Tính giá trị phương trình: \(A=\left(4x^5+4x^4-x^3+1\right)^{2018}+\left(\sqrt{4x^5+4x^4-5x^3+3}\right)^3+\left(\frac{1-\sqrt{2}x}{\sqrt{2x^2+2x}}\right)^{2017}\)
tại giá trị của x.