Giải phương trình
7(2x + 0,5) − 3(x + 4)= 4 − 5(x − 0,7)
Giải phương trình:
\(a,7\left(2x-0,5\right)-3\left(x+4\right)=4-5\left(x-0,7\right);\)
\(b,5x^3-2x^2-7x=0\).
Cakpan làm để mình kiểm tra cái nkaaa
a. 7(2x - 0,5) - 3(x + 4) = 4 - 5(x - 0,7)
⇔ 14x - 4,5 - 3x - 12 = 4 - 5x + 3,5
⇔ 14x -3x + 5x = 4 + 4,5 + 3,5
⇔ 16x = 12
⇔ x = \(\dfrac{12}{16}=\dfrac{3}{4}\)
a. 7(2x - 0,5) - 3(x + 4) = 4 - 5(x - 0,7)
⇔ 14x - 3,5 - 3x - 12 = 4 - 5x + 3,5
⇔ 14x - 3x + 5x = 4 + 3,5 + 3,5
⇔ 16x = 11
⇔ x = \(\dfrac{11}{16}\)
a. \(7\left(2x-0,5\right)-3\left(x+4\right)=4-5\left(x-0,7\right)\)
\(\Rightarrow14x-3,5-3x-12=4-5x+3,5\)
\(\Rightarrow14x-3x+5x=4+3,5+3,5+12\)
\(\Rightarrow16x=23\)
\(\Rightarrow x=\dfrac{23}{16}\)
Vậy \(S=\left\{\dfrac{23}{16}\right\}\)
b. \(5x^3-2x^2-7x=0\)
\(\Rightarrow x\left(5x^2-2x-7\right)=0\)
\(\Rightarrow x\left(x-\dfrac{7}{5}\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{7}{5}=0\\x+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{7}{5}\\x=-1\end{matrix}\right.\)
Vậy \(S=\left\{0;\dfrac{7}{5};-1\right\}\)
giải phương trình tích
a/(x - 2)(x + 3)=0
b/(x - 7)(2 + x)=0
c/(4x + 2)(3x - 4)
d/(2x +1)(x - 3)
e/(0,1x - 3)(x + 0,5)
f/(0,2x - 0,4)(0,1x+0,7)
a: =>x-2=0 hoặc x+3=0
=>x=2 hoặc x=-3
b:=>x-7=0 hoặc x+2=0
=>x=7 hoặc x=-2
c: =>4x+2=0 hoặc 3x-4=0
=>x=4/3 hoặc x=-1/2
d: =>2x+1=0 hoặc x-3=0
=>x=3 hoặc x=-1/2
a)
`(x-2)(x+3)=0`
`<=> x-2=0` hoặc `x+3=0`
`<=>x=2` hoặc `x=-3`
b)
`(x-7)(2+x)=0`
`<=>x-7=0` hoặc `2+x=0`
`<=>x=7` hoặc `x=-2`
c)
`(4x+2)(3x-4)=0`
`<=>4x+2=0` hoặc `3x-4=0`
`<=>x=-1/2` hoặc `x=4/3`
d)
`(2x+1)(x-3)=0`
`<=>2x+1=0` hoặc `x-3=0`
`<=>x=-1/2` hoặc `x=3`
e)
`(0,1x-3)(x+0,5)=0`
`<=>0,1x-3=0` hoặc `x+0,5=0`
`<=>x=30` hoặc `x=-0,5`
f)
`(0,2x-0,4)(0,1x+0,7)=0`
`<=>0,2x-0,4=0` hoặc `0,1x+0,7=0`
`<=>x=2` hoặc `x=-7`
giải các phương trình
a,3x-2=2x-3
b,3-4u+24+6u=u+27+3u
c,5-(x-6)=4(3-2x)
d,-6(1,5-2x)=3(-15+2x)
e,0,1-2(0,5-0,1)=2(t-2,5)-0,7
a, 3x -2 = 2x - 3
=> 3x - 2x = 2 - 3
=> x= - 1
b, là tương tự câu a
các câu sau bạn nhân phá ra mà giải nhé
a, 3x - 2 = 2x - 3
3x - 2x = -3 + 2
x = -1
b, 3 - 4u + 24 + 6u = u + 27 + 3u
-4u + 6u - u - 3u = 27 - 3 - 24
-2u = 0
u = 0 : (-2)
u = 0
c, 5 - (x - 6) = 4(3 - 2x)
5 - x + 6 = 12 - 8x
-x + 8x = 12 - 5 - 6
7x = 1
x = 1/7
d, -6(1,5 - 2x) = 3(-15 + 2x)
-9 + 12x = -45 + 6x
12x - 6x = -45 + 9
6x = -36
x = (-36) : 6
x = -6
e, 0,1 - 2(0,5 - 0,1) = 2(t - 2,5) - 0,7
0,1 - 1 + 0,2 = 2t - 5 - 0,7
-2t = -5 - 0,7 - 0,1 + 1 - 0,2
-2t = -5
t = -5/-2
t = 5/2
a) 3x - 2 = 2x - 3
⇔ 3x - 2x = -3 + 2
⇔ x = -1
Vậy phương trình có nghiệm duy nhất x = -1.
b) 3 - 4u + 24 + 6u = u + 27 + 3u
⇔ 2u + 27 = 4u + 27
⇔ 2u - 4u = 27 - 27
⇔ -2u = 0
⇔ u = 0
Vậy phương trình có nghiệm duy nhất u = 0.
c) 5 - (x - 6) = 4(3 - 2x)
⇔ 5 - x + 6 = 12 - 8x
⇔ -x + 11 = 12 - 8x
⇔ -x + 8x = 12 - 11
⇔ 7x = 1
⇔ x = 17
Vậy phương trình có nghiệm duy nhất x = 17.
d) -6(1,5 - 2x) = 3(-15 + 2x)
⇔ -9 + 12x = -45 + 6x
⇔ 12x - 6x = -45 + 9
⇔ 6x = -36
⇔ x = -6
Vậy phương trình có nghiệm duy nhất x = -6
Giải phương trình:
a) 1,2-(x-0,8)= -2(0,9+x)
b) 2,3x-2(0,7+2x)=3,6-1,7x
c) 3(2,2-0,3x)=2,6+(0,1x-4)
d) 3,6-0,5(2x+1)=x-0,25(2-4x)
a) 1,2-(x-0,8)= -2(0,9+x)
VT=-(x-2)
VP=\(-\frac{10x+9}{5}\)
pt trở thành:-(x-2)=\(-\frac{10x+9}{5}\)
<=>2-x=-2x-1,8
<=>5x=-19
<=>x=-3,8
a) 1,2-(x-0,8)= -2(0,9+x)
VT=-(x-2)
VP=$-\frac{10x+9}{5}$−10x+95
pt trở thành:-(x-2)=$-\frac{10x+9}{5}$−10x+95
<=>2-x=-2x-1,8
<=>5x=-19
<=>x=-3,8
b) 2,3x-2(0,7+2x)=3,6-1,7x
x=-2.25179981368525*10^16
c) 3(2,2-0,3x)=2,6+(0,1x-4)
Áp dụng tc tỉ lệ thức ta có:
\(\frac{66-9x}{10}=\frac{x-14}{10}\Rightarrow\left(66-9x\right)10=10\left(x-14\right)\)
VT=-30(3x-22)
pt trờ thành -30(3x-22)=10(x-14)
<=>660-90x=10x-140
<=>-100x=-800
<=>x=8
d) 3,6-0,5(2x+1)=x-0,25(2-4x)
Áp dụng tc tỉ lệ thức ta típ tục biến đổi được
\(\frac{31-10x}{10}=\frac{4x-1}{2}\Rightarrow\left(31-10x\right)2=10\left(4x-1\right)\)
VT=-2(10x-31)
pt trở thành -2(10x-31)=40x-10
<=>-60x=-72
<=>x=1,2
Giải phương trình sau :
a) 11 + 8x – 3 = 5x – 3 + x
b) 2x(x + 2)² - 8x² = 2(x – 2)(x² + 2x + 4)
c) (x + 1)(2x – 3) = (2x – 1)(x + 5)
d) 0,1 – 2(0,5t – 0,1) = 2(t – 2,5) – 0,7
a: Ta có: \(8x+11-3=5x+x-3\)
\(\Leftrightarrow8x+8=6x-3\)
\(\Leftrightarrow2x=-11\)
hay \(x=-\dfrac{11}{2}\)
b: Ta có: \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
\(\Leftrightarrow2x\left(x^3+6x^2+12x+8\right)-8x^2=2\left(x^3-8\right)\)
\(\Leftrightarrow2x^4+12x^3+24x^2+16x-8x^2-2x^3+16=0\)
\(\Leftrightarrow2x^4+10x^3+16x^2+16x+16=0\)
\(\Leftrightarrow2x^4+4x^3+6x^3+12x^2+4x^2+8x+8x+16=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x^3+6x^2+4x+8\right)=0\)
\(\Leftrightarrow x+2=0\)
hay x=-2
c: Ta có: \(\left(x+1\right)\left(2x-3\right)=\left(2x-1\right)\left(x+5\right)\)
\(\Leftrightarrow2x^2-3x+2x-3-2x^2-10x+x+5=0\)
\(\Leftrightarrow-10x+2=0\)
\(\Leftrightarrow-10x=-2\)
hay \(x=\dfrac{1}{5}\)
d: Ta có: \(\dfrac{1}{10}-2\cdot\left(\dfrac{1}{2}t-\dfrac{1}{10}\right)=2\left(t-\dfrac{5}{2}\right)-\dfrac{7}{10}\)
\(\Leftrightarrow\dfrac{1}{10}-t+\dfrac{1}{5}=2t-5-\dfrac{7}{10}\)
\(\Leftrightarrow-t-2t=-\dfrac{57}{10}-\dfrac{3}{10}=-6\)
hay t=2
1) Giải pt bậc nhất 1 ẩn:
a) 1,2 - (x - 0,8)= -2(0,9+x)
b) 2,3x - 2( 0,7+2x)= 3,6 -1,7x
c) 5 - (x - 6)= 4(3 - 2x)
d) 3,6 - 0,5(2x+1)= x - 0,25(2 - 4x)
e) (x - 3) (x + 4) - 2(3x - 2)= (x - 4)\(^2\)
f
\(a.1,2-\left(x-0,8\right)=-2\left(0,9+x\right)\\\Leftrightarrow1,2-x+0,8=-1,8-2x\\ \Leftrightarrow-x+2x=-1,2-0,8-1,8\\ \Leftrightarrow x=-3,8\)
Vậy nghiệm của phương trình trên là \(-3,8\)
\(b.2,3x-2\left(0,7+2x\right)=3,6-1,7x\\ \Leftrightarrow2,3x-1,4-4x=3,6-1,7x\\ \Leftrightarrow2,3x-4x+1,7x=1,4+3,6\\ \Leftrightarrow0x=5\)
\(\Rightarrow\)Vô nghiệm
\(c.5-\left(x-6\right)=4\left(3-2x\right)\\ \Leftrightarrow5-x+6=12-8x\\ \Leftrightarrow-x+8x=-5-6+12\\ \Leftrightarrow7x=1\\\Leftrightarrow x=\frac{1}{7}\)
Vậy nghiệm của phương trình trên là \(\frac{1}{7}\)
\(d.3,6-0,5\left(2x+1\right)=x-0,25\left(2-4x\right)\\ \Leftrightarrow3,6-x-0,5=x-0,5+x\\\Leftrightarrow -x-x-x=-3,6-0,5+0,5\\ \Leftrightarrow-3x=-3,6\\\Leftrightarrow x=1,2\)
Vậy nghiệm của phương trình trên là \(1,2\)
\(e.\left(x-3\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\\ \Leftrightarrow x^2+4x-3x-12-6x+4=x^2-8x+16\\\Leftrightarrow x^2-x^2+4x-3x-6x+8x=12-4+16\\ \Leftrightarrow3x=24\\ \Leftrightarrow x=8\)
Vậy nghiệm của phương trình trên là \(8\)
Giải các phương trình sau:
a) 1,2 – (x – 0,8) = –2(0,9 + x)
b) 3,6 – 0,5(2x + 1) = x – 0,25(2 – 4x)
c) 2,3x – 2(0,7 + 2x) = 3,6 – 1,7x
d) 0,1 – 2(0,5t – 0,1) = 2(t – 2,5) – 0,7
e) 3 + 2,25x +2,6 = 2x + 5 + 0,4x
f) 5x + 3,48 – 2,35x = 5,38 – 2,9x + 10,42
Giải các phương trình sau:
a) 2,3 - 2(0,7 + 2) = 3,6 - 1,7x
b) \(\dfrac{5x+7}{4}-\dfrac{3x+5}{8}=\dfrac{4x+9}{5}-\dfrac{x-9}{3}\)
c) \(\dfrac{2x-1}{4}+\dfrac{x-3}{3}=\dfrac{4x-2}{3}-\dfrac{6x+7}{12}\)
d) (x - 1)(x + 2) - x(x + 3) = 8
a: =>3,6-1,7x=2,3-1,4-4=0,9-4=-3,1
=>1,7x=6,7
hay x=67/17
b: \(\Leftrightarrow30\left(5x+4\right)-15\left(3x+5\right)=24\left(4x+9\right)-40\left(x-9\right)\)
=>150x+120-45x-75=96x+216-40x+360
=>105x+45=56x+576
=>49x=531
hay x=531/49
Bài 1: Giải các phương trình sau:
a) 3(2,2-0,3x)=2,6 + (0,1x-4)
b) 3,6 -0,5 (2x+1) = x - 0,25(22-4x)
Bài 2: Giải các phương phương trình sau:
a) \(\dfrac{3\left(x-3\right)}{4}\)+\(\dfrac{4x-10,5}{4}\)=\(\dfrac{3\left(x+1\right)}{5}\)+6
b) \(\dfrac{2\left(3x+1\right)+1}{4}\)-5=\(\dfrac{2\left(3x-1\right)}{5}\)-\(\dfrac{3x+2}{10}\)
Mik đang cần gấp nha!!❤
Bài 1: Giải các phương trình sau:
a) 3(2,2-0,3x)=2,6 + (0,1x-4)
<=> 6.6 - 0.9x = 2,6 + 0,1x - 4
<=> - 0.9x - 0,1x = -6.6 -1,4
<=> -x = -8
<=> x = 8
Vậy x = 8
b) 3,6 -0,5 (2x+1) = x - 0,25(22-4x)
<=> 3,6 - x - 0,5 = x - 5,5 + x
<=> - x - 3,1 = -5,5
<=> - x = -2.4
<=> x = 2.4
Vậy x = 2.4