cho a+b+c=1 a^2+b^2+c^2=2 a^3+b^3+c^3=3 tính a^4+b^4+c^4
a) cho a , b , c Tỉ lệ nghịch với 2 , 3 , 4 và 2a - 3b + c = 1 .Tính a , b , c
b) cho a , b , c Tỉ lệ thuận với 2 , 3 , 4 và 2a - 3b + c = 1 .Tính a , b , c
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{2a-3b+c}{2\cdot6-3\cdot4+3}=\dfrac{1}{3}\)
Do đó: a=2; b=4/3; c=1
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2a-3b+c}{2\cdot2-3\cdot3+4}=\dfrac{1}{-1}=-1\)
Do đó: a=-2; b=-3; c=-4
B1: Tìm các số nguyên x, y thỏa mãn: x^2 + 8y^2 + 4xy - 2x - 4y=4
B2: Thu gọn biểu thức B= (1/2 + 1).(1/2^2 + 1).(1/2^4 + 1).....(1/2^1024 + 1)
B3: Cho các số a b c khác 0 thỏa mãn a+b+c=0.Tính
C= (a+b-c)^3 + (b+c-a)^3 +(c+a-b)^3 / a.(b-c)^2 +b.(c-a)^2 +c.(a-b)^2
Các cậu giúp mình với.Sắp nộp bài rổi
cho (a+1)(b+1)(c+1)=1 , (a+2)(b+2)(c+2)=2 , (a+3)(b+3)(c+3)=3 hỏi (a+4)(b+4)(c+4)=?
Cho \(a,b,c>0\) thỏa mãn \(a^4+b^4+c^4=3\). Chứng minh:
\(\dfrac{a^2}{b^3+1}+\dfrac{b^2}{c^3+1}+\dfrac{c^2}{a^3+1}\ge\dfrac{3}{2}\)
a) Biết 2a , b - 1 , c - 2 TL với 3 , 4, 5 và a - 2b + c = 1. Tính a , b , c
b) Biết 2a , b - 1 , c - 2 TLN với 3 , 4, 5 và a - 2b + c = 1. Tính a , b , c
a: Theo đề, ta có:
\(\dfrac{2a}{3}=\dfrac{b-1}{4}=\dfrac{c-2}{5}\)
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b-1}{4}=\dfrac{c-2}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{3}{2}}=\dfrac{b-1}{4}=\dfrac{c-2}{5}=\dfrac{a-2b+c+2-2}{\dfrac{3}{2}-2\cdot4+5}=\dfrac{1}{-\dfrac{3}{2}}=-\dfrac{2}{3}\)
Do đó: a=-1; b-1=-8/3; c-2=-10/3
=>a=-1; b=-5/3; c=-4/3
b: Theo đề, ta có:
\(\dfrac{2a}{20}=\dfrac{b-1}{15}=\dfrac{c-2}{12}\)
hay \(\dfrac{a}{10}=\dfrac{b-1}{15}=\dfrac{c-2}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{10}=\dfrac{b-1}{15}=\dfrac{c-2}{12}=\dfrac{a-2b+c+2-2}{10-2\cdot15+12}=\dfrac{1}{-8}=\dfrac{-1}{8}\)
Do đó: a=-5/4; b-1=-15/8; c-2=-3/2
=>a=-5/4; b=-7/8; c=1/2
1. Cho a,b,c là 3 cạnh tam giác sao cho a+b+c=2
CM:a^2+b^2+c^2+2abc < 2
2. Cho a,b,c là 3 cạnh tam giác
CM: B=a^4+b^4+c^4-2a^2.b^2-2b^2.c^2-2c^2.a^2 < 0
3. Cho a,b,c dương biết a,b,c khác nhau
CM: A=a^3+b^3+c^3-3abc > 0
Quy định của hoc24 là chỉ dc dăng 1 bài trong 1 câu hỏi bạn nhé
bài 1 :
Tam giác ABC có độ dài 3 cạnh là a,b,c và có chu vi là 2
--> a + b + c = 2
Trong 1 tam giác thì ta có:
a < b + c
--> a + a < a + b + c
--> 2a < 2
--> a < 1
Tương tự ta có : b < 1, c < 1
Suy ra: (1 - a)(1 - b)(1 - c) > 0
⇔ (1 – b – a + ab)(1 – c) > 0
⇔ 1 – c – b + bc – a + ac + ab – abc > 0
⇔ 1 – (a + b + c) + ab + bc + ca > abc
Nên abc < -1 + ab + bc + ca
⇔ 2abc < -2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < a² + b² + c² – 2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < (a + b + c)² - 2
⇔ a² + b² + c² + 2abc < 2² - 2 , do a + b = c = 2
⇔ a² + b² + c² + 2abc < 2
--> đpcm
cho a,b,c > 0 , tm a +b +c = 1 . CM : \(a^4/(a^3 + b^3) + b^4/(b^3 + c^3 )+ c^4/(c^3 + a^3) >= 1/2\)
ptích => ntử :
Câu 1: a(b+c)^2((b-c)+B(c+a)^2(c-a)+c(a+b)^2(a+b);
Câu 2: a(b-c)^3+b(c-a)^3+c(a-b)^3
Câu 3 :a^2b^2(a-b)+b^2c^2(b-c)+c^2+a^2(c-a)
Câu 4: a(b^2+c^2)+(c^2+a^2)+c(a^2+b^2)-2abc-a^3-b^3-c^3
Câu 5: a^4(b-c)+b^4(c-a)+c^4(a-b)
Bài 1: Cho B=1+3+32+...+32015
a) Tính 3B b) CM:B=32016-1:2
Bài 2: Cho C=1+4+42+...+46
a) Tính 4C b) CM:C=47-1:3
Bài 3: Cho C=1+4+...+42006
a) Tính 4C b) CM:C=42007-1:3
Bài 1:
a) 3B = 3 + 32 + 33 +...+ 32016
b) 3B - B = 3 + 32 + 33 +...+ 32016 - 1 - 3 - 32 -...- 32015
=> 2B = 32016 - 1 => B = (32016 - 1) : 2
Bài 2:
a) 4C = 4 + 42 + 43+...+ 47
b) 4C - C = 4 + 42 + 43+...+ 47 - 1 - 4 - 42-...- 46
=> 3C = 47 - 1 => C = (47 - 1) : 3
Bài 3:
a) 4C = 4 + 42 + ...+ 42007
b) 4C - C = 4 + 42 + ...+ 42007 - 1 - 4 - ...- 42006
=> 3C = 42007 - 1 => C = (42007 - 1) : 3
Bài 1: 3B=3^1+3^2+3^3+...+3^2016
2B=3^2016-1
B=3