phan tich da thuc thanh nhan tu
8(x2+3x+5)2+7(x2+3x+5)-15
phan tich da thuc thanh nhan tu :x^5+2x^4+3x^3+2x^2+2x+1
x^5+2x^4+2x^3+2x^2+2x+1
=(x^5+x^4)+(x^4+x^3)+(x^3+x^2)+(x^2+x)+(x+1)
=x^4(x+1)+x^3(x+1)+x^2(x+1)+x(x+1)+(x+1)
=(x+1)(x^4+x^3+x^2+x+1)
Phan tich da thuc thanh nhan tu : x2 - 4x -y2+4
\(x^2-4x+4-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
\(x^2-4x-y^2+4=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\)
Phan tich da thuc thanh nhan tu : x2 - 4x -y2+4
\(x^2-4x+4-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
\(=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\)
phan tich da thuc thanh nhan tu 1-3x-x^3+3x^2
\(1-3x-x^3+3x^2\)\(=\left(1-x^3\right)+\left(3x^2-3x\right)\)
\(=\left(1-x\right)\left(x^2+x+1\right)+3x\left(x-1\right)\)
\(=\left(x-1\right)\left(3x-x^2-x-1\right)=\left(x-1\right)\left(2x-x^2-1\right)\)
phan tich da thuc thanh nhan tu 6x4+x3-3x2-17x-5
phan tich da thuc thanh nhan tu
a: 4x^2-20xy +25-[3x-2]^2
b: x^2-6x+5+[x-5]^2
\(x^2-6x+5+\left(x-5\right)^2\)
\(=x^2-6x+5+x^2-10x+25\)
\(=2x^2-6x-10x+30\)
\(=x.\left(2x-6\right)-5.\left(2x-6\right)\)
\(=\left(x-5\right).\left(2x-6\right)\)
phan tich da thuc thanh nhan tu
a, x^5+x-1
b, (x^2+3x+2)(x62+7x+12)-24
b ( x^2 + 3x + 2)( x^2 + 7x + 12) - 24
= [ x^2 +x + 2x + 2) ( x^2 +3x + 4x + 12) - 24
= [x(x+1) + 2 (x + 1) [x(x+3) + 4(x+3) ] - 24
= ( x + 1)(x+2) (x+3)(x+4) - 24
= ( x + 1).(x+4) (x+2)(x+3) - 24
=(x^2 + 5x + 4)(x^2+5x+6) - 24
Đặt x^2 + 5x +4 =y ta có:
= y(y+2) - 24
= y^2 + 2y - 24
= y^2 + 2y + 1 - 25
= ( y + 1)^2 - (5)^2
= ( y + 1 - 5 )( y + 1 + 5)
= ( y- 4)(y +6)
Thay y trở lại là đc
đúng nha
phan tich da thuc thanh nhan tu x2-3x+18
phan tich da thuc thanh nhan tu
x3-3x2-3x+1
x3-3x2-3x+1=x3+1-3x2-3x
=(x+1)(x2-x+1)-3x(x+1)
=(x+1)(x2-x+1-3x)
=(x+1)(x2-4x+1)