\(\left(\sqrt{\dfrac{a}{b}+2\sqrt{ab}}+b\sqrt{\dfrac{a}{b}}\right)\sqrt{ab}\)
Thực hiện phép tính.
a) \(\left(\sqrt{ab}+2\sqrt{\dfrac{b}{a}}-\sqrt{\dfrac{a}{b}+\sqrt{\dfrac{1}{ab}}}\right)\sqrt{ab}\)
b) \(\left(\dfrac{am}{b}\sqrt{\dfrac{n}{m}}-\dfrac{ab}{n}\sqrt{mn}+\dfrac{a^2}{b^2}\sqrt{\dfrac{m}{n}}\right).a^2b^2.\sqrt{\dfrac{n}{m}}\)
Giải chi tiết ra hộ mình với ạ, mình cảm ơn ạ.
Rút gọn biểu thức
a) \(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\left(\sqrt{a+\sqrt{b}}\right)^2-4\sqrt{ab}}.\dfrac{a-b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\) \(\left(đkxđ:a\ne b;a\ge0;b\ge0\right)\)
b) \(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\dfrac{a-b}{\left(\sqrt{a}+\sqrt{b}\right)^2}\)\(\left(đkxđ:a\ne b;a\ge0;b\ge0\right)\)
HELP ME PLSSSSSSSSSS
câu a ở phần mẫu của cụm đầu tiên cái \(\left(\sqrt{a+\sqrt{b}}\right)^2\rightarrow\left(\sqrt{a}+\sqrt{b}\right)^2\) giúp em với ạ ( em cảm ơn )
a
\(=\dfrac{a-2\sqrt{ab}+b+4\sqrt{ab}}{a+2\sqrt{ab}+b-4\sqrt{ab}}.\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)^2}\\ =\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}.\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}\\ =\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2.\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2}\\ =\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}\)
Cho biểu thức A = \(\left(\dfrac{\sqrt{ab}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}+\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{b}-\sqrt{a}}+1\right):\left(\dfrac{\sqrt{ab}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}+\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{a}-\sqrt{b}}-1\right)\)
Cho \(\sqrt{ab}+1=4.\sqrt{b}\), tìm max của biểu thức A.
Đăt\(\sqrt{a}\)=x, \(\sqrt{b}\)=y (x,y>0)
=>xy+1=4y => 4y≥ \(2\sqrt{xy}\)=>\(2\sqrt{y}\)≥\(\sqrt{x}\)=> 4y≥x=> 4≥ \(\dfrac{x}{y}\)=> \(\dfrac{1}{4}\)≤\(\dfrac{y}{x}\)=>\(\dfrac{-1}{4}\)≥\(\dfrac{-y}{x}\)
Xét:A=(\(\dfrac{xy+y}{x+y}\)+\(\dfrac{xy+x}{y-x}\)+1):(\(\dfrac{xy+y}{x+y}\)+\(\dfrac{xy+x}{x-y}\)-1)
= \(\dfrac{-2y^2\left(x+1\right)}{\left(x-y\right)\left(x+y\right)}\).\(\dfrac{\left(x-y\right)\left(x+y\right)}{2xy\left(x+1\right)}\)
=> A= \(\dfrac{-y}{x}\)≤\(\dfrac{-1}{4}\)
Dấu "=" xảy ra <=> xy=1 và x=4y <=> x=2, y=\(\dfrac{1}{2}\) <=> a =4, b=\(\dfrac{1}{4}\)
Vậy Max A =\(\dfrac{-1}{4}\) <=> a=4, b=\(\dfrac{1}{4}\)
P=\(\left(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{3\sqrt{ab}}{a\sqrt{a}+b\sqrt{b}}\right).\left[\left(\dfrac{1}{\sqrt{a}-\sqrt{b}}-\dfrac{3\sqrt{ab}}{a\sqrt{a}-b\sqrt{b}}\right):\dfrac{a-b}{a+\sqrt{ab}+b}\right]\)
a) Rút gọn
b) Tính P khi a=16 và b=4
a) ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\b>0\\a\ne b\end{matrix}\right.\)
P = \(\dfrac{a-\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}.\left[\left(\dfrac{a+\sqrt{ab}+b-3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\right):\dfrac{a-b}{a+\sqrt{ab}+b}\right]\)= \(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}.\left[\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}.\dfrac{a+\sqrt{ab}+b}{a-b}\right]\)
= \(\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}.\dfrac{\sqrt{a}-\sqrt{b}}{a-b}\)
= \(\dfrac{1}{a-\sqrt{ab}+b}\)
b) có a = 16 và b = 4 (thoả mãn ĐKXĐ)
Thay a = 16, b =4 vào P có:
P = \(\dfrac{1}{16-\sqrt{16.4}+4}\)= \(\dfrac{1}{12}\)
Vậy tại a =16, b = 4 thì P = \(\dfrac{1}{12}\)
Cho biểu thức I = \(\left(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{3\sqrt{ab}}{a\sqrt{a}+b\sqrt{b}}\right)\).\(\left[\left(\dfrac{1}{\sqrt{a}-\sqrt{b}}+\dfrac{3\sqrt{ab}}{a\sqrt{a}-b\sqrt{b}}\right):\dfrac{a-b}{a+\sqrt{ab}+b}\right]\)
Rút gọn I
a) Tính giá trị của I với a = 16, b = 4
\(I=\dfrac{a-\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\cdot\left[\left(\dfrac{a+\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\right)\cdot\dfrac{a+\sqrt{ab}+b}{a-b}\right]\)
\(=\dfrac{a+2\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\cdot\left(\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\cdot\dfrac{a+\sqrt{ab}+b}{a-b}\right)\)
\(=\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}\cdot\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a-b\right)}\)
\(=\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)^2\cdot\left(a-\sqrt{ab}+b\right)}\)
Khi a=16 và b=4 thì \(I=\dfrac{16+4+4\cdot\sqrt{16\cdot4}}{\left(4-2\right)^2\cdot\left(16-\sqrt{16\cdot4}+4\right)}=\dfrac{20+4\cdot8}{4\cdot12}\)
\(=\dfrac{20+32}{48}=\dfrac{52}{48}=\dfrac{13}{12}\)
\(\dfrac{\left(a\sqrt{b}+b\right)\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\sqrt{\dfrac{ab+b^2-2\sqrt{ab^3}3}{a\left(a+2\sqrt{b}\right)+b}}\)
Sửa đề: \(\dfrac{\left(a\sqrt{b}+b\right)\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2\sqrt{ab^3}}{a\left(a+2\sqrt{b}\right)+b}}\)
Đặt \(A=\dfrac{\left(a\sqrt{b}+b\right)\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2\sqrt{ab^3}}{a\left(a+2\sqrt{b}\right)+b}}\)
ĐKXĐ: a>0 và b>0 và a<>b
\(A=\dfrac{\left(a\sqrt{b}+b\right)\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2\sqrt{ab^3}}{a\left(a+2\sqrt{b}\right)+b}}\)
\(=\dfrac{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\cdot\left(\sqrt{a}+\sqrt{b}\right)}\cdot\sqrt{\dfrac{ab+b^2-2\sqrt{ab}\cdot b}{a^2+2a\sqrt{b}+b}}\)
\(=\dfrac{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\sqrt{\dfrac{\left(\sqrt{ab}-b\right)^2}{\left(a+\sqrt{b}\right)^2}}\)
\(=\dfrac{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{ab}-b}{\sqrt{a}+\sqrt{b}}\)
\(=\dfrac{\sqrt{b}\left(\sqrt{ab}-b\right)}{\sqrt{a}-\sqrt{b}}=\dfrac{b\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\)
=b
Cho \(P=\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+b}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right):\left(\dfrac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\right)\)
Tìm \(a\in Z\) để \(P\in Z\)
\(P=\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+\sqrt{b}}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right):\dfrac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\left(đk:a\ne b,a\ge0,b\ge0\right)\)
\(=\dfrac{3a-3\sqrt{ab}-3a+a+\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+\sqrt{b}\right)}.\dfrac{2\left(a+\sqrt{ab}+b\right)}{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\dfrac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}.\dfrac{2}{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2.2}{\left(\sqrt{a}-\sqrt{b}\right)^2\left(a-1\right)}=\dfrac{2}{a-1}\in Z\)
\(\Rightarrow a-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Do \(a\ge0\)
\(\Rightarrow a\in\left\{0;2;3\right\}\)
Ta có: \(P=\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+b}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right):\left(\dfrac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\right)\)
\(=\dfrac{3a-3\sqrt{ab}-3a+a+\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\cdot\dfrac{2\left(a+\sqrt{ab}+b\right)}{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}\cdot\dfrac{2}{a-1}\)
\(=\dfrac{2}{a-1}\)
Để P là số nguyên thì \(a-1\in\left\{1;-1;2;-2\right\}\)
hay \(a\in\left\{2;0;3\right\}\)
Rút gọn biểu thức sau:
a) A= \(\dfrac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}-\dfrac{\sqrt{b}}{a+\sqrt{ab}}\right)\)
b) B=\(\left(\dfrac{2}{\sqrt{a}-\sqrt{b}}-\dfrac{2\sqrt{a}}{a\sqrt{a}+b\sqrt{b}}.\dfrac{a\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}\right):4\sqrt{ab}\)
giúp mình với ạ, mk cần gấp lắm
3.P=\(\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+b}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right)\):\(\left(\dfrac{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\right)\)
a)Rút gọn P
b)Tìm những giá trị nguyên của a để P có giá trị nguyên
Rút gọn pt
a, \(-\dfrac{2}{3}\sqrt{\dfrac{\left(a-b\right)^3.b^5}{c}.\dfrac{9}{4}\sqrt{\dfrac{c^3}{2\left(a-b\right)}}\sqrt{ }98b}\)
b, \(\left(\sqrt{ab}+2\sqrt{\dfrac{b}{a}}-\sqrt{\dfrac{a}{b}+\dfrac{1}{ab}}\right).\sqrt{ab}\)
c, \(\left(\sqrt{b}-3\sqrt{3}+5\sqrt{2}-\dfrac{1}{2}\sqrt{8}\right).2\sqrt{6}\)
d, \(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)
b: \(=\left(\sqrt{ab}+\dfrac{2\sqrt{ab}}{a}-\sqrt{\dfrac{a^2+1}{ab}}\right)\cdot\sqrt{ab}\)
\(=ab+\dfrac{2ab}{a}-\sqrt{a^2+1}=ab+2b-\sqrt{a^2+1}\)
c: \(=2\sqrt{6b}-6\sqrt{18}+10\sqrt{12}-\sqrt{48}\)
\(=2\sqrt{6b}-18\sqrt{2}+20\sqrt{3}-4\sqrt{3}\)
\(=2\sqrt{6n}-18\sqrt{2}+16\sqrt{3}\)
d: \(=\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\dfrac{\sqrt{21}}{7}\)