Cho S = 1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 +...+ 2^2020 + 2^2021 chia hết cho
A. 10
B. 3
C. 4
D. 6
Giúp mik với
Cho S = 1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 +...+ 2^2020 + 2^2021 chia hết cho
A. 10
B. 3
C. 4
D. 6
Giúp mik với
mình đang cần gấp m.n giúp mình nha :33
Cho A=5+4^2+4^3+......+4^2020+4^2021. Chứng minh rằng 3A+1 chia hết cho 4^2021
\(A=5+4^2+...+4^{2021}\\ A=4^0+4^1+...+4^{2021}\\ 4A=4^1+4^2+...+4^{2022}\\ 4A-A=\left(4^1+4^2+...+4^{2022}\right)-\left(4^0+4^1+...+4^{2021}\right)\\ 3A=4^{2022}-1\\ 3A+1=4^{2022}⋮4^{2021}\)
cho biểu thức A= 5+4^2+4^3 +...+4^2020+4^2021. chứng minh 3A+1 chia hết cho 4^2021
Lời giải:
$A-1=4+4^2+4^3+...+4^{2020}+4^{2021}$
$4(A-1)=4^2+4^3+4^4+....+4^{2021}+4^{2022}$
$\Rightarrow 4(A-1)-(A-1)=4^{2022}-4$
$3(A-1)=4^{2022}-4$
$\Rightarrow 3A+1=4^{2022}\vdots 4^{2021}$
a, 6/7 + 3/10
b, 5/9 + 1/3
c, 5/8 - 2/5
d, 1/4 - 1/7
Giúp mik với, mik cần gấp
\(a,\dfrac{6}{7}+\dfrac{3}{10}=\dfrac{60}{70}+\dfrac{21}{70}=\dfrac{81}{70}\\ b,\dfrac{5}{9}+\dfrac{1}{3}=\dfrac{5}{9}+\dfrac{3}{9}=\dfrac{8}{9}\\ c,\dfrac{5}{8}-\dfrac{2}{5}=\dfrac{25}{40}-\dfrac{16}{40}=\dfrac{9}{40}\\ d,\dfrac{1}{4}-\dfrac{1}{7}=\dfrac{7}{28}-\dfrac{4}{28}=\dfrac{3}{28}\)
ChoA=1+2^1+2^2+2^3+...+2^2020+2^2021
a Tính 2.A
b chứng minhA=2^2022-1
a) Ta có A = 1 + 21 + 22 + ... + 22021
2A = 21 + 22 + 23 + ... + 22022
Vậy 2A = 21 + 22 + 23 + ... + 22022
b) 2A - A = ( 21 + 22 + 23 + ... + 22022 ) - ( 1 + 21 + 22 + ... + 22021 )
A = 22022 - 1
Vậy A = 22022 - 1
a)
\(A=1+2^1+2^2+2^3+...+2^{2020}+2^{2021}\)
\(2A=2^1+2^2+2^3+2^4+...+2^{2021}+2^{2022}\)
b)
\(2A=2^1+2^2+2^3+...+2^{2022}\)
\(2A-A=\left(2^1+2^2+2^3+...+2^{2022}\right)-\left(1+2^1+2^2+....+2^{2021}\right)\)
\(A=2^{2022}-1\)
=> đpcm
a/
\(2A=2+2^2+2^3+...+2^{2022}\)
b/
\(A=2A-A=2^{2022}-1\)
A=(1 + 2/3 ) x ( 1+2/4 ) x ( 1+2/5 ) x ... x ( 1+2/2020 ) x ( 1+ 2/2021)
giúp mik với ai đúng mik tick 10 lần
\(\left(1+\dfrac{2}{3}\right).\left(1+\dfrac{2}{4}\right).\left(1+\dfrac{2}{5}\right)....\left(1+\dfrac{2}{2020}\right).\left(1+\dfrac{2}{2021}\right)\)
= \(\dfrac{5}{3}.\dfrac{6}{4}.\dfrac{7}{5}.\dfrac{8}{6}.\dfrac{9}{7}....\dfrac{2022}{2020}.\dfrac{2023}{2021}\)
= \(\dfrac{1}{3}.\dfrac{1}{4}.2022.2023\)
= \(\dfrac{337.2023}{2}\)
= \(\dfrac{\text{681751}}{2}\)
Bài 1: Cho A= 2 + 2 ^ 2 + 2 ^ 3 +.......+2^ 60 . Chứng tỏ rằng: 4 chia hết cho 3,5,7. Bài 2: Cho S= 1 + 5 ^ 2 + 5 ^ 4 + 5 ^ 6 +***+5^ 2020 . Chứng minh rằng S chia hết cho 313 Bài 3: Tính A= 5 + 5 ^ 2 + 5 ^ 3 +...+5^ 12
Bài 3:
\(A=5+5^2+..+5^{12}\)
\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)
\(5A=5^2+5^3+...+5^{13}\)
\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)
\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)
\(4A=5^{13}-5\)
\(A=\dfrac{5^{13}-5}{4}\)
tính bằng 2 cách
a (2/3 - 2/5 ) nhân 1/3
b (2/3 + 2/5 )nhân 1/3
c (2/3 + 1/2 ) chia 3/4
d(4/7 - 2/5 ) chia 4/9
a: \(=\dfrac{10-6}{15}\cdot\dfrac{1}{3}=\dfrac{4}{45}\)
b: \(=\dfrac{10+6}{15}\cdot\dfrac{1}{3}=\dfrac{16}{45}\)
c: \(=\dfrac{4+3}{6}\cdot\dfrac{4}{3}=\dfrac{7\cdot4}{6\cdot3}=\dfrac{28}{18}=\dfrac{14}{9}\)
d: \(=\dfrac{20-14}{35}\cdot\dfrac{9}{4}=\dfrac{6}{35}\cdot\dfrac{9}{4}=\dfrac{54}{140}=\dfrac{27}{70}\)
a (2/3 - 2/5 ) nhân 1/3
C1)
=4/15 x 1/3
= 4/45
C2)
2/3 x 1/3 - 2/5 x 1/3
= 2/9 - 2/15
= 4/45
b (2/3 + 2/5 )nhân 1/3
GIỐNG CÂU A
c (2/3 + 1/2 ) chia 3/4
C1) =7/6 : 3/4
= 14/9
C2)
2/3 : 3/4 + 1/2 : 3/4
= 8/9 + 2/3
= 14/9
d(4/7 - 2/5 ) chia 4/9
C1)
= 6/35 : 4/9
= 27/70
C2)
4/7 : 4/9 - 2/5 : 4/9
= 9/7 -9/10
= 27/70
a) C1 : \(\left(\dfrac{2}{3}-\dfrac{2}{5}\right)\times\dfrac{1}{3}=\dfrac{4}{15}\times\dfrac{1}{3}=\dfrac{4}{45}\)
C2 : \(\left(\dfrac{2}{3}-\dfrac{2}{5}\right)\times\dfrac{1}{3}=\dfrac{2}{3}\times\dfrac{1}{3}-\dfrac{2}{5}\times\dfrac{1}{3}=\dfrac{2}{9}-\dfrac{2}{15}=\dfrac{4}{45}\)
b) C1 \(\left(\dfrac{2}{3}+\dfrac{2}{5}\right)\times\dfrac{1}{3}=\dfrac{16}{15}\times\dfrac{1}{3}=\dfrac{16}{45}\)
C2 \(\left(\dfrac{2}{3}+\dfrac{2}{5}\right)\times\dfrac{1}{3}=\dfrac{2}{3}\times\dfrac{1}{3}+\dfrac{2}{5}\times\dfrac{1}{3}=\dfrac{2}{9}+\dfrac{2}{15}=\dfrac{16}{45}\)
c) C1 \(\left(\dfrac{2}{3}+\dfrac{1}{2}\right):\dfrac{3}{4}=\left(\dfrac{2}{3}+\dfrac{1}{2}\right)\times\dfrac{4}{3}=\dfrac{7}{6}\times\dfrac{4}{3}=\dfrac{14}{9}\)
C2 \(\left(\dfrac{2}{3}+\dfrac{1}{2}\right):\dfrac{3}{4}=\left(\dfrac{2}{3}+\dfrac{1}{2}\right)\times\dfrac{4}{3}=\dfrac{2}{3}\times\dfrac{4}{3}+\dfrac{1}{2}\times\dfrac{4}{3}=\dfrac{8}{9}+\dfrac{2}{3}=\dfrac{14}{9}\)
d) C1 \(\left(\dfrac{4}{7}-\dfrac{2}{5}\right):\dfrac{4}{9}=\left(\dfrac{4}{7}-\dfrac{2}{5}\right)\times\dfrac{9}{4}=\dfrac{6}{35}\times\dfrac{9}{4}=\dfrac{27}{70}\)
C2 \(\left(\dfrac{4}{7}-\dfrac{2}{5}\right):\dfrac{4}{9}=\left(\dfrac{4}{7}-\dfrac{2}{5}\right)\times\dfrac{9}{4}=\dfrac{4}{7}\times\dfrac{9}{4}-\dfrac{2}{5}\times\dfrac{9}{4}=\dfrac{36}{28}-\dfrac{9}{10}=\dfrac{27}{70}\)
S=(1-2/2*3)(1-2/3*4)(1-2/4*5)...(1-2/2020*2021)
ta có :
\(1-\frac{2}{2.3}=\frac{2.3-2}{2.3}=\frac{1.2}{2.3}\)
tương tự : \(1-\frac{2}{3.4}=\frac{2.3}{3.4},....,1-\frac{2}{2020.2021}=\frac{2019.2020}{2020.2021}\)
Vậy \(S=\frac{1.2}{2.3}.\frac{2.3}{3.4}.....\frac{2019.2020}{2020.2021}=\frac{1.\left(2.3...2019\right)^2.2020}{2.\left(3.4....2020\right)^2.2021}=\frac{2}{2020.2021}\)