Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thuỳ linh
Xem chi tiết

\(a,ĐKXĐ:\\ \left[{}\begin{matrix}x+1\ne0\\2x-6\ne0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ne-1\\x\ne3\end{matrix}\right.\\ b,P=0\\ \Leftrightarrow\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=0\\ \Leftrightarrow\dfrac{3x\left(x+1\right)}{3\left(x+1\right)\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{x}{x-2}=0\\ \Leftrightarrow x=0\left(TM\right)\)

Vậy tại X=0 thì P=0

Toru
2 tháng 12 2023 lúc 12:20

a) Để P xác định thì: \(\left[{}\begin{matrix}x+1\ne0\\2x-6\ne0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ne-1\\x\ne3\end{matrix}\right.\)

b) \(P=\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=\dfrac{3x\left(x+1\right)}{\left(x+1\right)\left(2x-6\right)}=\dfrac{3x}{2x-6}\)

Để \(P=0\) thì: \(\dfrac{3x}{2x-6}=0\)

\(\Leftrightarrow3x=0\)

\(\Leftrightarrow x=0\left(tm\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 11 2017 lúc 2:16

Phân thức  3 x + 2 2 x - 1 - 3 2 x + 1  xác định khi:

2(x – 1) – 3(2x + 1) ≠ 0

Ta giải phương trình: 2(x – 1) – 3(2x + 1) = 0

Ta có: 2(x – 1) – 3(2x + 1) = 0 ⇔ 2x – 2 – 6x – 3 = 0

⇔ -4x – 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4

Vậy khi x  ≠  -5/4 thì phân thức A xác định.

Linh Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 12 2021 lúc 7:07

\(a,ĐK:x^2-1=\left(x-1\right)\left(x+1\right)\ne0\Leftrightarrow x\ne\pm1\\ \dfrac{3x+3}{x^2-1}=\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{3}{x-1}=2\\ \Leftrightarrow x-1=\dfrac{3}{2}\Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\\ b,\dfrac{3}{x-1}\in Z\\ \Leftrightarrow x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-2;0;2;4\right\}\left(tm\right)\)

Hứa Suất Trí
Xem chi tiết
Nguyễn Hữu Triết
21 tháng 12 2018 lúc 14:09

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

❤  Hoa ❤
21 tháng 12 2018 lúc 19:02

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3

❤  Hoa ❤
21 tháng 12 2018 lúc 19:21

chết mk nhìn nhầm phần c bài 2 :

\(2,\left(\frac{2+x}{2-x}+\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)

Để P xác định 

\(\Rightarrow2-x\ne0\Rightarrow x\ne2\)

\(2+x\ne0\Rightarrow x\ne-2\)

\(x^2-4\ne0\Rightarrow x\ne0\)

\(x^2-3x\ne0\Rightarrow x\ne3\)

b, \(P=\left(\frac{2+x}{2-x}+\frac{4x^2}{\left(2+x\right)\left(2-x\right)}+\frac{2-x}{2+x}\right):\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\)

\(P=\left[\frac{4+4x+x^2}{\left(2-x\right)\left(2+x\right)}-\frac{4x^2}{\left(2+x\right)\left(2-x\right)}-\frac{4-4x+x^2}{\left(2+x\right)\left(2-x\right)}\right].\frac{x\left(2-x\right)}{x-3}\)

\(P=\left[\frac{8x-4x^2}{\left(2-x\right)\left(2+x\right)}\right].\frac{x\left(2-x\right)}{x-3}=\frac{4x\left(2-x\right)}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)

\(P=\frac{4x^2\left(2-x\right)}{\left(x-3\right)\left(2+x\right)}\)

d, ĐỂ \(p=\frac{8x^2-4x^3}{x^2-x-6}< 0\)

\(TH1:8x^2-4x^3< 0\)

\(\Rightarrow8x^2< 4x^3\)

\(\Rightarrow2< x\Rightarrow x>2\)

\(TH2:x^2-x-6< 0\Rightarrow x^2< x+6\)

Heo Cute
Xem chi tiết
Heo Cute
3 tháng 12 2021 lúc 21:30

giúp mik vs cần gấp ko làm vào vở nha

Nguyễn Lê Phước Thịnh
3 tháng 12 2021 lúc 21:33

Đề sai rồi bạn

Nam Hồ Sỹ Bảo
Xem chi tiết
Nguyễn Thái Thịnh
28 tháng 12 2022 lúc 21:53

\(P=\dfrac{3x^2+6x+3}{x+1}\)

\(a,\) Điều kiện xác định: \(x+1\ne0\Leftrightarrow x\ne-1\)

\(b,P=\dfrac{3x^2+6x+3}{x+1}=\dfrac{3\left(x^2+2x+1\right)}{x+1}=\dfrac{3\left(x+1\right)^2}{x+1}=3\left(x+1\right)=3x+3\)

\(c,x=1\Rightarrow P=3.1+3=6\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 3 2018 lúc 9:59

bé nga
Xem chi tiết
bé nga
10 tháng 1 2018 lúc 18:35

mk cần gấp lắm các bạn ạk

Không Tên
10 tháng 1 2018 lúc 19:13

BÀI 1:

a)  \(ĐKXĐ:\)          \(x-3\)\(\ne\)\(0\)

                          \(\Leftrightarrow\)\(x\)\(\ne\)\(3\)

b)   \(A=\frac{x^3-3x^2+4x-1}{x-3}\)

\(=\frac{\left(x^3-3x^2\right)+\left(4x-12\right)+11}{x-3}\)

\(=\frac{x^2\left(x-3\right)+4\left(x-3\right)+11}{x-3}\)

\(=x^2+4+\frac{11}{x-3}\)

Để  \(A\)có giá trị nguyên thì  \(\frac{11}{x-3}\)có giá trị nguyên

hay  \(x-3\)\(\notinƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

Ta lập bảng sau

\(x-3\)    \(-11\)         \(-1\)             \(1\)           \(11\)

\(x\)             \(-8\)               \(2\)              \(4\)           \(14\)

Vậy....

bé nga
10 tháng 1 2018 lúc 19:16

cảm ơn bạn nha nhưng bạn có chắc là nó đúng ko

Thanh Thảo Thái Thị
Xem chi tiết
Thanh Thảo Thái Thị
3 tháng 9 2021 lúc 10:30

giúpp mình vs

 

 

Lấp La Lấp Lánh
3 tháng 9 2021 lúc 10:35

a) \(\dfrac{3x+3}{x^2-1}\)

\(ĐKXĐ:x\ne1\)
b) \(\dfrac{3x+3}{x^2-1}=\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{3}{x-1}\)

Nguyễn Lê Phước Thịnh
3 tháng 9 2021 lúc 14:32

a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

b: \(\dfrac{3x+3}{x^2-1}=\dfrac{3\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{3}{x-1}\)